40 research outputs found

    Aggravating environmental factors in chronic obstructive respiratory diseases

    Get PDF

    Aggravation of allergic airway inflammation by cigarette smoke in mice is CD44-dependent

    Get PDF
    Background : Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods : Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results : In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion : We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics

    A new danger in the air: how pulmonary innate immunity copes with man-made airborne xenobiotics

    No full text
    Abstract: The pulmonary innate immune system has evolved over millions of years to provide swift detection of inhaled microbial agents and trigger well-balanced protective responses. Much more recent on the evolutionary scale is human activity, which has resulted in the release of a new class of potentially harmful, non-microbial compounds into the air. These xenobiotics include combustion by-products such as reactive oxygen species and polycyclic aromatic hydrocarbons. This review will summarize evidence showing how airborne xenobiotics can engage pulmonary innate immunity components at many levels. We will focus on potential effects of xenobiotics on airway dendritic cells, as these constitute key innate immune sensors in the lung, with the unique ability to initiate adaptive immunity. We propose that the aberrant processing of inhaled xenobiotics by an innate immune system that is now evolutionarily maladapted underlies the increase in chronic inflammatory lung diseases in modern times

    Short cigarette smoke exposure facilitates sensitisation and asthma development in mice

    No full text
    Epidemiological studies indicate that cigarette smoke (CS) exposure is a risk factor for increased sensitization and asthma development. The aim of the study was to examine the impact of CS on sensitization and allergic airway inflammation, in response to a low dose of house dust mite (HDM), and to obtain potential mechanistic insights.Mice were exposed to low doses of HDM extract combined with air or CS exposure, either during allergen sensitization or during development of allergic airway disease.Mice concomitantly exposed to low dose HDM, combined with CS for 3 weeks, demonstrated an asthmatic phenotype with significantly increased airway eosinophilia, goblet cell metaplasia, airway hyperresponsiveness and a rise in HDM-specific serum IgG1, compared to sole HDM or CS exposure. In addition, short CS inhalation, during the initial contact with HDM allergens, was sufficient to facilitate sensitization and development of a complete asthmatic phenotype after rechallenge with HDM. Mechanistically, short CS exposure amplified DC-mediated transport of FITC-labelled HDM allergens to the intrathoracic lymph nodes and generated a local Th2 response.Short CS exposure is sufficient to facilitate allergic sensitization and the development of low dose HDM-induced allergic asthma, possibly through affecting dendritic cell function

    Concomittant inhalation of cigarette smoke and aerosolized protein activates airway dendritic cells and induces allergic airway inflammation in a TLR-independent way

    No full text
    Abstract: Cigarette smoking is associated with the development of allergic asthma. In mice, exposure to cigarette smoke sensitizes the airways toward coinhaled OVA, leading to OVA-specific allergic inflammation. Pulmonary dendritic cells (DCs) are professional APCs involved in immunosurveillance and implicated in the induction of allergic responses in lung. We investigated the effects of smoking on some of the key features of pulmonary DC biology, including trafficking dynamics and cellular activation status in different lung compartments. We found that cigarette smoke inhalation greatly amplified DC-mediated transport of inhaled Ags to mediastinal lymph nodes, a finding supported by the up-regulation of CCR7 on airway DCs. Pulmonary plasmacytoid DCs, which have been involved in inhalational tolerance, were reduced in number after smoke exposure. In addition, combined exposure to cigarette smoke and OVA aerosol increased surface expression of MHC class II, CD86, and PDL2 on airway DCs, while ICOSL was strongly down-regulated. Although inhaled endotoxins, which are also present in cigarette smoke, have been shown to act as DC activators and Th2-skewing sensitizers, TLR4-deficient and MyD88 knockout mice did not show impaired eosinophilic airway inflammation after concomitant exposure to cigarette smoke and OVA. From these data, we conclude that cigarette smoke activates the pulmonary DC network in a pattern that favors allergic airway sensitization toward coinhaled inert protein. The TLR independency of this phenomenon suggests that alternative immunological adjuvants are present in cigarette smoke. The Journal of Immunology, 2009, 183: 2758-2766
    corecore