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Summary 

 

Asthma and chronic obstructive pulmonary disease (COPD) are respiratory disorders 

characterized by shortness of breath, mucus production and cough. Over the last decades, 

the incidence and severity of both diseases has increased continuously, especially in the 

industrialized West. Although genetic predisposition is a fundamental factor underlying both 

disorders, the observed increase in prevalence has occurred too rapidly to be explained by 

genetic variations alone, implicating a role for environmental factors. 

 

The strongest predictive factor for the development of asthma is the sensitization to house 

dust mite (HDM) allergens. Additionally, epidemiological studies have demonstrated that 

cigarette smoke (CS) exposure is a considerable risk factor for the development or 

progression of allergic asthma. To better understand the impact of CS exposure on 

immunological responses towards allergens, we took advantage of a previously established 

mouse model in which CS breaks inhalation tolerance to the “surrogate” allergen ovalbumin. 

Investigating the impact of CS inhalation on key aspects of airway dendritic cells (DCs), 

revealed enhanced DC recruitment and maturation in mice concomitantly exposures to CS 

and ovalbumin for 3 weeks. Prolonged CS inhalation further amplified the DC-mediated 

transport of inhaled ovalbumin to the draining lymph nodes. In order to unravel the 

underlying mechanisms leading to a Th2-oriented immune response, we hypothesized a role 

for the endotoxin-like effects of CS in facilitating allergic sensitization by triggering the 

endotoxin-recognition receptor TLR4 on epithelial cells or DCs. Surprisingly, neither TLR4 

deficient mice, nor the adaptor protein MyD88 knockout mice were protected against CS-

induced facilitated Th2 immunity, suggesting that other pathways are involved. 

 

Importantly, the differences in biochemical and immunogenic characteristics of the 

surrogate allergen ovalbumin and real-life allergens (e.g. HDM) may have a profound impact 

on the mechanisms behind the elicited allergic response. Accordingly, we established a novel 

mouse model with improved clinical relevance, using HDM as real-life allergen, together 

with CS as indoor pollutant. We provided biological proof that CS indeed favours HDM-

driven asthma development, as illustrated by increased characteristics of asthma, such as 

enhanced eosinophilia, elevated production of Th2-related cytokines, increased airway 
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hyperresponsiveness and HDM-specific serum IgG1. Furthermore, we demonstrated that CS 

inhalation during the sensitization phase is sufficient to induce asthma development in mice. 

We found that only a few days of CS inhalation during the initial allergen contact already 

enhanced DC recruitment, activation and migration to the lymph nodes, supporting the local 

induction of HDM-specific Th2 immunity. Finally, using IL1RI deficient mice, we 

demonstrated IL1RI to be necessary to prime local Th2 responses in the lymph nodes. 

 

Chronic CS inhalation is an important risk factor for the development of COPD. In addition, 

repeated CS exposure may compromise the epithelial barrier function against invading 

pathogens, making COPD patients more prone to develop acute exacerbations with 

aggravation of symptoms. The discovery of specific IgE antibodies directed against 

Staphylococcus aureus enterotoxins in patients with COPD, provides indications that these 

antigens may act as potential aggravating factors of COPD pathophysiology. To focus on the 

disease-aggravating role of bacterial superantigens, we designed a novel mouse model of 

concomitant exposure to CS and Staphylococcus aureus enterotoxin B. Simultaneous 

exposure to both stimuli resulted in a significant aggravation of hallmark features of CS-

induced pulmonary inflammation, such as a marked increase in CD8+ T lymphocytes and 

neutrophils, enhanced goblet cell hyperplasia and the formation of dense lymphoid 

aggregates in the lung. 

 

In conclusion, we demonstrated a role for environmental factors in the induction, 

progression or aggravation of asthma and COPD, using mouse models of combined 

exposures to natural and anthropogenic environmental stimuli. 
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Samenvatting 

 

Astma en chronisch obstructief longlijden (COPD) zijn veel voorkomende respiratoire 

ziekten, met klachten als kortademigheid, chronisch hoesten en slijm. De laatste jaren is de 

prevalentie en de ernst van beide ziekten, vooral in de geïndustrialiseerde landen, sterk 

toegenomen. Niettegenstaande de genetische achtergrond een belangrijke risicofactor kan 

zijn in het ontstaan van astma en COPD, worden vooral omgevingsfactoren verantwoor-

delijk geacht voor de snel toegenomen prevalentie. 

 

De belangrijkste predictieve factor voor het ontstaan van astma, is de sensibilisatie ten 

opzichte van huisstofmijt (HSM) allergenen. Uit epidemiologische studies blijkt dat 

sigarettenrook (SR) eveneens een belangrijke trigger is in het ontstaan en de progressie van 

de ziekte. Om inzichten te verwerven in de moleculaire mechanismen verantwoordelijk voor 

SR-geïnduceerd astma, werd initieel gebruik gemaakt van een reeds bestaand muismodel 

waar SR de normale inhalatietolerantie ten opzichte van het “surrogaat” allergeen 

ovalbumine verstoort. Onderzoek naar het effect van SR op het gedrag van pulmonaire 

dendritische cellen (DCs), de belangrijkste immuunsensors in de long, onthulde een 

verhoogde rekrutering en maturatie van DCs in muizen die 3 weken werden blootgesteld aan 

een combinatie van SR en ovalbumine. Langdurige SR inhalatie amplificeerde eveneens het 

DC-gemedieerde transport van dit antigen naar de drainerende lymfeknopen. Een belangrijk 

mechanisme, verantwoordelijk voor de DC activatie en de ontwikkeling van Th2 responsen in 

de long, is de TLR4 – endotoxine pathway. Daarom werden TLR4 deficiënte muizen, alsook 

adaptor eiwit MyD88 knock-out muizen blootgesteld aan sigarettenrook in combinatie met 

OVA aerosol. De deficiënte muizen bleken echter op even efficiënte wijze als de wildtypes 

allergische inflammatie te genereren in de luchtwegen, wat doet vermoeden dat 

alternatieve mechanismen betrokken zijn in de ontwikkeling van SR-geïnduceerd astma.  

 

Het verschil in biochemisch en immunogeen karakter tussen het surrogaat allergeen 

ovalbumine en werkelijke allergenen (vb. HSM) kan echter de onderliggende mechanismen 

van een allergische respons in sterke mate beïnvloeden. Bijgevolg werd een nieuw 

muismodel ontwikkeld, gebruik makend van HSM als klinisch relevant allergeen, 

gecombineerd met SR als omgevingspolluent. Gebruik makend van dit model kon biologisch 
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bewijs geleverd worden dat SR inderdaad de ontwikkeling van HSM-geïnduceerd astma kan 

beïnvloeden, wat zich vertaalde in een toegenomen astma fenotype, zoals een stijging in 

eosinofilie, verhoogde productie van Th2-gerelateerde cytokines, toegenomen luchtweg 

hyperreactiviteit en HSM-specifiek serum IgG1. Verder bleek de blootstelling aan SR tijdens 

de sensitisatie fase reeds voldoende om astma te ontwikkelen. Meer nog, een kortstondige 

SR blootstelling van slechts enkele dagen, tijdens de eerste contacten met het allergeen, was 

reeds voldoende om DCs in verhoogde mate te activeren en te rekruteren naar de long, 

alsook hun migratie naar de lymfeknopen te stimuleren en zó HSM-specifieke Th2 

immuniteit te induceren. Finaal kon, gebruik makend van IL1RI deficiënte muizen, 

aangetoond worden dat IL1RI noodzakelijk is voor de inductie van deze Th2 responsen in de 

lymfeknopen. 

 

De chronische blootstelling aan SR is een belangrijke risicofactor voor de ontwikkeling van 

COPD. Aangezien SR de mucosale weerstand tegen invasieve pathogenen verzwakt, kan dit 

COPD patiënten gevoeliger maken voor de ontwikkeling van acute exacerbaties met 

versterkte symptomen tot gevolg. De ontdekking van specifieke immunoglobulines in COPD 

patiënten, gericht tegen de virulente enterotoxines afkomstig van Staphylococcus aureus, 

doet vermoeden dat deze antigenen mogelijks een rol spelen in de aggravatie van COPD 

pathofysiologie. Om dit te onderzoeken, ontwikkelden we een nieuw muismodel van 

gecombineerde blootstelling aan SR en Staphylococcus aureus enterotoxine B. Gelijktijdige 

blootstelling aan beide stimuli resulteerde in een significante aggravatie van typische 

kenmerken van CS-geïnduceerde pulmonaire inflammatie, zoals een verhoogde toename 

van CD8+ T lymfocyten en neutrofielen, toegenomen slijmbeker hyperplasie en de vorming 

van compacte lymfoide aggregaten in de long. 

 

In conclusie, gebruik makend van muismodellen waarin de blootstelling aan natuurlijke en 

antropogene omgevingsstimuli werden gecombineerd, hebben we aangetoond dat 

omgevingsfactoren een belangrijke rol kunnen spelen in de inductie, progressie en 

aggravatie van astma en COPD. 

 

 

10



 
11 

  

 

 

 
 

 

 

 

 

 

 

PART I: INTRODUCTION 
 

In the following 3 chapters, we will highlight different aspects of asthma and COPD 

pathogenesis, which will be addressed in the thesis further on.
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CHAPTER 1: ANCIENT MEETS NOVEL: PULMONARY INNATE 

IMMUNITY AND THE RISE OF ANTHROPOGENIC STIMULI 

1 
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1.1. Pulmonary innate immunity 

 

The innate immune system of the lung is one of the most critical homeostatic systems of the 

body.  Life-threatening damage to the delicate gas-exchange structures can occur either by 

failure to rapidly detect and clear inhaled airborne pathogens, or as a result of an unbridled 

inflammatory response. Hence, the integrity of the lung must be protected at all times.   

 

Despite their structural vulnerability, the lungs defend themselves effectively through a 

combination of mechanical, humoral (adaptive immunity) and cellular mechanisms 1,2. The 

airway epithelial lining, composed of ciliated and mucous-secreting cells, provide the first 

line of defense against invading pathogens 3,4. Beating of the cilia moves a continuous 

stream of mucus, trapping and ejecting inhaled pathogens from the lung. Antimicrobial 

peptides and pulmonary surfactant proteins, synthesized by the epithelium of the deeper 

alveolar zones, further constitute an additional immediate mechanism of defense 5. 

Phagocytic cells, like alveolar macrophages and neutrophils, complete the picture by 

neutralizing persistent pathogens that broke through. Other important sensors of innate 

immunity are invariant natural killer (iNK) T cells and pulmonary dendritic cells (DCs). 

Pulmonary DCs are a heterogenous population of antigen-presenting cells (APC) with the 

unique ability to initiate appropriate adaptive immune responses in the lung 6. They reside in 

tissues in close contact to the external environment and form an extensive network 

immediately above and beneath the basement membrane and within the interalveolar 

septa. Their specialized surface receptors (e.g. C-type lectin receptors, Toll-like receptors 

(TLRs)) recognize highly conserved pathogen-associated molecular patterns or PAMPs 7. 

Inhalation of invading pathogens unveils the innate character of airway DC dynamics, 

reflected by their fast and massive recruitment into the airways and lungs 8. Capture of 

inhaled antigens leads to DC activation and migration to the T cell zones of draining thoracic 

lymph nodes and depending on the nature of the antigen, DCs will selectively promote Th1, 

Th2 or Th17 immunity 9. 
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1.2. The rise of anthropogenic stimuli # 

 

Throughout evolution, innate immunity had to co-evolve constantly in order to remain 

effective. Dating back millions of years ago, the explosive colonization of the land by a 

myriad of organisms characteristic for that time, must have brought a constant selection 

pressure on the very first airway innate immune defenses, especially with the development 

of the first vertebrate lungs 360 million years ago 10,11. Seen on this time-scale, human 

evolution is an extremely recent event. 

 

Since prehistoric times, and boosted by the first industrial revolution, human activity has 

resulted in the ever increasing release of airborne xenobiotic compounds, most of them 

derived from the combustion of fossil fuels (e.g. diesel, charcoal) 12 or tobacco 13.  

Xenobiotics (Greek xenos = foreigner, stranger) are chemically synthesized compounds that 

do not exist naturally and are thus ‘foreign to the body’ 14. Carbonaceous particles (e.g. 

diesel exhaust particles), as well as a broad array of volatile compounds (carbon monoxide 

(CO), nitrogen oxides (NOx), sulphur dioxides (SO2)) and the more carcinogenic polycyclic 

aromatic hydrocarbons (PAHs) are all important classes of pollutants with ‘unnatural’ 

effects. Because of their small size (< 10 μm PM10, < 2.5 μm PM2.5, < 0.1 μm PM0.1), airborne 

particulates can be easily inhaled and absorbed into the bloodstream or deposited in the 

deeper zones of the lung, causing adverse respiratory and cardiac effects 15-17. 

Furthermore, due to socioeconomic changes, higher levels of combustion products have 

been reached since the widespread use of tobacco. Emerging evidence suggests a prominent 

role for cigarette smoke (CS) as indoor risk factor for the development of respiratory 

diseases 18. Cigarette smoke is a major and entirely preventable cause of disease in middle- 

and high-income countries and kills nearly 6 million people each year. Unless urgent action is 

taken, the annual death toll can rise to more than eight million by 2030 19. 

 

The question arises how the immune system of the lung deals with these evolutionary 

recent anthropogenic stimuli. It can be assumed that confrontation of un-evolved airway 

DCs with these modern agents induces aberrant immune responses in the lung, giving a new 

view on the pathogenesis of several chronic inflammatory pulmonary diseases, like asthma 

and chronic obstructive pulmonary disease (COPD). 

# Based on: ‘A new danger in the air: how pulmonary innate immunity copes with man-made airborne 
xenobiotics.’ Lanckacker EA, Robays LJ, Joos GF, Vermaelen KY. J Innate Immun. 2010;2(2):96-106. 
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CHAPTER 2: ALLERGIC ASTHMA 2 
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2.1. Introduction 

 

Asthma is a chronic inflammatory disease, characterized by recurrent episodes of wheezing, 

breathlessness, chest tightness and cough. The symptoms are usually associated with 

increased airway hyperresponsiveness and variable airflow obstruction, which is often 

reversible, either spontaneously or after treatment 20.  

Extensive work has been done to understand the complex aetiology of the asthmatic 

disease. Most asthmatic patients are atopic or genetically predisposed to produce 

immunoglobulin (Ig)E antibodies to common environmental allergens, like house dust mites 

(HDMs), molds, grass pollen or animal dander. More than 50% of all asthma cases are 

attributed to atopic (allergic) Th2-high eosinophilic asthma, however an important part is 

non-Th2 prone 21,22. Non-Th2-related asthma is often associated with severe asthmatic 

disease and characterized by a mixed Th1/Th2 phenotype and neutrophilic airway 

inflammation 23. The introductory part of this thesis will especially focus on atopic Th2-prone 

allergic asthma. For more information about different asthma phenotypes, we refer to the 

review of Wenzel et al. 23. 

 

Allergic asthma results from aberrant immune responses towards inhaled aeroallergens and 

originates from allergic sensitization, followed by repetitive and persistent re-exposure to 

the same allergen. Typical for allergic asthma is the chronic inflammatory response, 

accountable for almost all the cardinal features of asthma pathophysiology. The persistence 

and nature of the inflammation, largely determines the severity of the disease, which can 

vary from intermittent to mild, moderate or severe persistent asthma or can even be fatal 24. 

 

2.1.1.  Inhalation tolerance 

 

DCs play a crucial role in determining the outcome of an immune response upon mucosal 

antigen encounter. The mucosal environment itself instructs DCs to induce an immune 

response that is either tolerogenic or immunogenic. In steady state or in the absence of any 

‘danger’ signal, tissue resident immature DCs express low levels of co-stimulatory molecules 

on their cell surface. DCs will take-up harmless environmental compounds and present them 
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in the lymph nodes, inducing regulatory T cells 

(Tregs) who will further maintain the 

homeostasis in the lung (Figure 1). 

In healthy individuals, immune tolerance is the 

normal functional outcome upon allergen 

exposure. Failure of these endogenous 

tolerance mechanisms are thought to be 

responsible for allergen sensitization and the 

development of an aberrant immune 

response. 

 

2.1.2.  Mucosal allergic sensitization towards aeroallergens 

 

The strongest predictive factor for the development of asthma, is the sensitization to 

aeroallergens. Allergic sensitization is defined as the phase between the initial encounter of 

the allergen in the body and the development of increased IgE sensitivity, however without 

causing any allergic symptoms yet. Sensitization generally begins in early childhood and may 

last a few days, several months or even years. 

 

The airway DCs are the key regulators of allergic sensitization in the lung. They form an 

extensive network immediately above and beneath the airway basement membrane and 

project their dendrites in between the epithelial cells to sample the incoming air without 

breaking the epithelial integrity 25. DCs have to sense (exogenous) danger signals to get 

properly activated. This danger signal can originate directly from the allergen itself or from 

the local tissue environment and determines the nature of the subsequent immune 

response. Especially the release of Th2-skewing mediators from the airway epithelium are 

important (see Chapter 2.2). Once activated, DCs take up the encountered allergens, process 

them into small peptides and present them, in the context of major histocompatibility 

complex (MHC) II molecules, to naïve CD4+ T cells in the lymph nodes (Figure 2). During their 

migration to the lymph nodes, DCs differentiate into professional antigen presenting cells, 

expressing costimulatory molecules (CD80, CD86) that favour the differentiation and clonal 

expansion of allergen-specific T helper 2 (Th2) effector cells 26. Moreover, the differentiation 

Figure 1: Allergen exposure in healthy  individual. 
Arrow:               migration;             differentiation. Figure by 

Lanckacker EA 
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Figure 2: Mucosal sensitization in atopic patients. 
Arrow:               migration;              differentiation. Figure by 

Lanckacker EA, based on Galli et al. Nature. 2008 Jul 24;454(7203):445-54 

towards the Th2 phenotype seems to 

be dependent on the so-called ‘early 

IL-4’, probably released by basophils 

as primary source 27. The induction of 

a Th2 immune response results in the 

further release of interleukin (IL)-4 

and IL-13. These cytokines will sti-

mulate allergen-specific B cells to 

undergo immunoglobulin class 

switch recombination from IgM to 

IgE 
28. Allergen-specific IgE binds the 

high affinity IgE receptor FcεRI expressed on mast cells and basophils and remains there until 

re-exposure of the same allergen occurs (Figure 2). Once initiated, the IgE response can be 

further amplified by basophils, mast cells and activated eosinophils. From now on, the 

subject is sensitized, allergen re-exposure may result in a rapid allergic reaction.  

 

2.1.3.  Allergic inflammation and asthma development 

 

In sensitized individuals, re-introduction of the allergen will crosslink adjacent IgE molecules 

on mast cells and basophils, activating them to release the content of their granules into the 

surrounding fluids (Figure 3). The rapid release of preformed and newly synthesized proin-

flammatory mediators contributes to the acute signs and symptoms of the allergic 

inflammatory response. The early phase of an allergic reaction typically occurs within 

minutes or even seconds following allergen exposure. The local release of proinflammatory 

mediators such as histamine, eicosanoids (e.g. leukotriene (LT) B4, prostaglandin (PG) D2) 

and proteases (e.g. tryptase) induces vasodilation, bronchoconstriction and excessive mucus 

production. During the late phase reaction, other mast cell mediators such as 

multifunctional cytokines (e.g. IL-8, CC chemokine ligand (CCL)-2, tumor necrosis factor 

(TNF)-α) and growth factors (e.g. granulocyte macrophage colony-stimulating factor (GM-

CSF)) further induce chemotactic recruitment and activation of eosinophils, neutrophils and 

Th2 effector cells. The late phase reaction takes place 2 to 6 hours after allergen rechallenge 

and may even persist a few days. The local recruitment of Th2 cells implies the production of 
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Th2-cytokines which account for the complex features of asthma. The infiltration of 

eosinophils in the lungs, is mediated by IL-5 in concert with CC chemokine receptor (CCR)3 

chemokines, such as eotaxin. IL-5 is also important for the proliferation, activation and 

survival of eosinophils. The IgE antibody production requires the release of IL-4 and IL-13. In 

addition, these cytokines will be responsible for the up-regulation of vascular cell adhesion 

molecule (VCAM)-1 on endothelial cells, facilitating transendothelial migration of very late 

antigen (VLA)-4 positive inflammatory cells. Furthermore, IL-13 together with IL-9 can 

change the excitability of bronchial smooth muscle cells, inducing airway 

hyperresponsiveness and goblet cell hyperplasia. IL-9 is also identified as potent mast cell 

growth and differentiation factor (Figure 3) 24.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

2.1.4. Chronic allergic inflammation  

 

Continuous or repetitive allergen exposure results in a persistent inflammatory response. In 

the beginning, the inflammation is largely restricted to the conducting airways. However, as 

Figure 3: Early and late phase response after allergen rechallenge. The early phase response is characterized by 
mast cell activation through cross-linking of allergen-specific IgE and results in bronchoconstriction, increased 

vascular permeability and mucus production. The late phase reaction is characterized by infiltration of the airway 
wall with eosinophils and lymphocytes. Arrow:            functional consequences of mast cell mediator release. 

Figure by Lanckacker EA, based on Galli et al. Nature. 2008 Jul 24;454(7203):445-54. 
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the disease becomes more chronic, cellular infiltrates (eosinophils, lymphocytes, 

neutrophils) disperse to the trachea and the smaller airways and finally, take up residence in 

the tissues. Especially the presence of eosinophils is characteristic for chronic allergic airway 

inflammation. Eosinophils are thought to be major contributors to tissue damage, as 

activated eosinophils release potential tissue damaging superoxides, eicosanoids, major 

basic protein (MBP) and a range of cytokines and chemokines 29. Interestingly, eosinophilic 

inflammation and airway remodeling, have been reported in biopsies from young children, 

suggesting that these changes might be initiated, unexpectedly, early in life 30. Repetitive 

tissue damage due to chronic airway inflammation is associated with substantial thickening 

of the airway wall and may account for severe airflow obstruction and decline in lung 

function, as observed in established asthma. Airway wall remodeling includes epithelial 

fragility, goblet cell metaplasia and submucosal gland enlargement, increased deposition of 

extracellular matrix proteins (tenascin, fibronectin, and type I, III and V collagen) and 

increased smooth muscle mass index 31. In addition, the mitotic activity of the airway 

epithelium, required for restoration of the denuded place, may be suppressed in patients 

with asthma and may explain the abnormal repair response to injury 32. 

 

2.2. Role of the airway epithelium 

 

Airway epithelial cells make up the first line of defense against various particles and 

aeroallergens. The physical barrier function of the epithelium depends on the coordinate 

expression of tight junction (e.g. claudins, occludin, zonula occludens (ZO)-1, 2, 3) and 

adherens junction proteins (E-cadherin, β-catenin) 33. Most of the clinically relevant allergens 

have protease activity, degrading these transmembrane proteins to promote allergen access 

to the DC network underneath. Loss of E-cadherin for example has been described in 

biopsies from patients with asthma 34 and may facilitate allergic sensitization by modulating 

DC biology 35. 

The airway epithelium is pivotal in the development of immune responses in the lung (Figure 

4A). The unique interplay between epithelial cells and DCs is crucial for the induction of 

inflammatory disorders, such as asthma 36. Epithelial cells and DCs interact through the 

release of cytokines and other soluble compounds. CCL2 and CCL20 for example are 

produced by airway epithelial cells following environmental exposures and are known to 
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attract monocytes and immature DCs to the lung 37-39. In addition, airway epithelial cells 

express an array of pattern recognition receptors (PRRs) (TLRs, NOD-like Receptors, C-type 

lectins, Protease-activated receptors (PARs)), used to rapidly detect and respond to 

pathogens or their PAMPs; and to damage-associated molecular patterns (DAMPs), released 

upon cell damage or stress. Signalling through PRRs leads to NF-κB activation and the 

subsequent release of pro-inflammatory cytokines by airway epithelial cells. Hammad et al. 

demonstrated that epithelial activation of TLR4 in response to HDM or LPS drives the 

production of GM-CSF, thymic stromal lymphopoietin (TSLP), IL-25 and IL-33 40. These 

pleiotropic innate cytokines share the capacity to instruct DCs to mount Th2-mediated cell 

responses in the lung. TSLP and GM-CSF for example are key initiators of allergic airway 

inflammation. Neutralization of GM-CSF during sensitization, strongly reduced all salient 

features of HDM-induced asthma 41,42 and overexpression of both cytokines in the murine 

airway compartment induces Th2 sensitization to otherwise innocuous antigens 43,44. In 

addition, naive CD4+ T cells primed by TSLP-stimulated DCs produce the typical proallergic 

cytokines IL-4, IL-5 and IL-13 45. IL-25, also known as IL-17E, has been shown to regulate type 

2 immunity through its direct effect on TSLP-DC activated Th2 memory cells and directly 

stimulates activated memory cells to further differentiate into Th2 effector cells 46,47. 

Furthermore, IL-33, a member of the IL-1 family, interacts with the orphan receptor ST2, 

preferentially expressed on DCs, Th2 cells and mast cells. IL-33-activated DCs are crucial for 

T-cell proliferation and Th2 polarization in the draining lymph nodes 48. Also other members 

of the IL-1 family, such as IL-1α and IL-1β, are released by bronchial epithelial cells upon 

environmental exposures. Willart et al. showed that IL-1α, and to a lesser extent IL-1β, is 

sufficient to promote mucosal sensitization to inhaled protein allergens 42.  

 

In addition to the production of cytokines, DAMPs such as, uric acid (UA) and extracellular 

adenosine triphosphate (ATP) are increased in the airways of mice and asthmatic patients 

following persistent allergen exposure 49-51. Kool et al. demonstrated an important role for 

UA in mediating HDM-induced Th2 cell immunity through the production of innate cytokines 

(GM-CSF, TSLP and IL-25) and the recruitment of inflammatory DCs 49. Furthermore, Idzko et 

al. identified a crucial role for ATP in the process of Th2 sensitization. Administration of 

exogenous ATP to the murine lung induced a break of inhalation tolerance and the enhanced 

recruitment and activation of lung DCs 50.  
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The airway epithelium is not only crucial during mucosal sensitization. The dynamic changes 

of the epithelium due to persistent environmental insults, may alter epithelial-mesenchymal 

communication and may play an important role in airway wall remodeling 52 (Figure 4B). 

One of the early events in the so-called epithelial-to-mesenchymal transition (EMT) is the 

disassembly of tight junction proteins and the epithelial release of repair markers such as 

epithelial growth factor (EGF) and transforming growth factor (TGF)-β. EGF is a key cytokine 

in promoting goblet cell metaplasia 53, however other cytokines (IL-13, IL-25, IL-33) secreted 

from cells of the innate and adaptive immune system are also involved. TGF-β controls the 

proliferation of fibroblasts and their transdifferentiation into myofibroblasts, which promote 

the synthesis of extracellular matrix components, like collagen or fibronectin 54. 

 

2.3. Risk factors for allergic sensitization  

 

Endogenous as well as exogenous factors may affect the chance of being sensitized to 

common allergens. Host factors (atopy, gender, age, race) combined with environmental 

influences (environmental allergens, pollutants, infection history, birth order, diet, drugs, 

obesity) will determine the progression of asthma as a disease. 

Figure 4: Role of the airway epithelium during sensitization and airway wall remodeling. 
Arrows:              migration;             differentiation.  

Figure 4A by Lanckacker EA, based on Hammad et al. Nat Rev Immunol. 2008 Mar;8(3):193-204. 
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Genetic studies identified distinct regions within the human genome, closely associated with 

asthma, atopy and bronchial hyperresponsiveness. Gene variants on chromosome 17q21 

associated with the expression of ORMDL3, are linked with asthma susceptibility and early-

onset asthma, especially in the presence of environmental tobacco smoke (ETS) 55,56. 

Furthermore, variations within the TSLP and IL33 genes and within the IL1RL1 gene, 

encoding the IL-33 receptor, have shown associations with many atopic phenotypes 57,58. 

However, the relationship between allergy and atopy is rather complicated. Not everyone 

with atopy develops clinical manifestations of allergy and not everybody with clinical 

symptoms is atopic.  

 

Besides genetic factors, personal aspects such as age or gender, are known risk factors for 

asthma. Boys suffer more often from asthma than girls, whereas in adults the prevalence is 

reversed 59. Importantly, early childhood represents the ‘prime time’ for initial sensitization. 

Many reports already demonstrated the presence of allergen-reactive T-cells in cord blood, 

giving evidence for transplacental priming 60. Moreover, infant T cells are predominantly 

Th2-prone and neonatal APCs represent a relatively immature phenotype, explaining the 

increased risk for Th2 sensitization early in life 61. 

According to the hygiene hypothesis, a lack of early childhood exposure to infectious agents 

increases the risk for allergic disease 62. Exposure to microbes or their biological products 

(e.g. endotoxin/lipopolysaccharaide (LPS)) can protect against the development of atopy by 

skewing the Th1/Th2 balance away from the allergy-promoting Th2-cells. However, the 

hygiene hypothesis has been abandoned by most researchers as being too simplistic and 

failure of endogenous tolerance mechanisms, rather than a Th1/Th2 imbalance may be 

pivotal in the development of allergic disease 63. 

 

Enhanced susceptibility to allergic sensitization can be further attributed to environmental 

factors, such as the exposure to indoor or outdoor allergens (e.g. HDM, cockroach, cat, dog, 

mould vs. grass, weed, or birch pollens). Especially the role of HDM will be discussed 

extensively in Chapter 2.4.  

The risk for childhood asthma strongly depends on the level of allergen exposure. Reducing 

the indoor allergen dose or the frequency of allergen contact will lower the sensitization risk. 

However, there is no linear relationship between early allergen exposure and asthma 

26



 
27 

Figure 5: Risk for sensitization in relation to allergen concentration. 
Adapted from Holt et al. Nat Immunol. 2005 Oct;6(10):957-60. 

incidence. As illustrated in Figure 5 64, the sensitization risk increases with the allergen dose, 

until a plateau is reached. Beyond this level, a further increase in allergen concentration, 

rather reduces the potential sensitization risk. 

 

 

 

 

 

 

 
 

The sensitizing potential of numerous allergens not only depends on the quantity of the 

inhaled substance but also on the intrinsic properties of the allergen itself. Many of the 

common aeroallergens responsible for asthma development are proteases, including major 

HDM allergen Der p 1 or cat allergen Fel d 1. In addition, allergens with protease activity are 

able to mediate sensitization of non-protease proteins (e.g. pollen allergens) when 

simultaneously inhaled 65,66. Some allergens that lack protease activity can induce epithelial 

barrier dysfunction indirectly through the induction of the angiogenic cytokine vascular 

endothelial growth factor (VEGF) 67. Furthermore, anthropogenic climate changes, such as 

increases in CO2 concentration or surface temperature, may alter allergen production, 

distribution and allergenicity 68. Plants may vary their pollination calendar, advancing and 

prolonging their pollination period, with subsequent effects on the severity and prevalence 

of allergic disease 69,70.  

 

Other factors contributing to the onset or aggravation of allergic diseases are indoor or 

outdoor environmental pollutants (e.g. tobacco smoke, ozone, diesel exhaust). Particularly 

tobacco smoke has been shown to act synergistically with allergen exposure to induce or 

enhance immune regulated lung diseases. Hence, the role of CS in asthmatic disease will be 

fully discussed in Chapter 2.5.  

Furthermore, the causal relationship between proximity to roadways and asthma 71 is 

correlated with ozone 72 and/or diesel exhaust 73,74. Both the organic matter adsorbed to 

diesel exhaust particles (DEP) and the non-extractable carbon core are thought to be 
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responsible for the adjuvant effect 75. DEP can absorb aeroallergens, released by pollen 

grains, which may increase the allergen load in nose and lung 76,77. Moreover, several murine 

sensitization models using ovalbumin (OVA) or HDM (Der f) in the presence of DEP reveal an 

increase in antigen-specific IgG1 or enhanced pulmonary inflammation and goblet cell 

metaplasia 78,79. 

Both tobacco smoke as well as diesel exhaust particles are complex vectors of reactive 

oxygen species (ROS), polycyclic aromatic hydrocarbons (PAHs) and a myriad of other 

noxious xenobiotic compounds. The potential effects of PAHs and oxidative stress on 

pulmonary DCs and their impact on subsequent immune responses in the lung are 

extensively reviewed in Chapter 7. 

 

Finally, respiratory tract viruses or bacterial infections have emerged as the most frequent 

triggers for acute exacerbations in both children and adults. The role of viruses during 

asthma exacerbations is nicely reviewed by Jackson et al. 80,81. 

 

2.4. House dust mite allergens 

 

50 to 85 % of asthmatics are HDM allergic 82. In addition to asthma, other common allergic 

disorders such as rhinitis, rhinoconjunctivitis and atopic dermatitis are associated with HDM 

allergy.  

 

2.4.1. Our intimate associates 

 

The perennial indoor HDM Dermatophagoides pteronyssinus belongs to the taxonomical 

class of the Arachnida, subclass Acari and is more closely related to spiders, scorpions and 

horseshoe crabs than to insects. Dust mites are ubiquitous throughout humid areas of the 

world and are 8-legged as all acari are.  Their size can vary between 0.2 to 0.4 mm which is 

barely visible to the naked eye. During their life cycle, they transform from eggs to larva, 

protonymphs, tritonymphs and adults, with an optimal growth temperature around 25°C. 

Common HDMs feed on human skin flakes, with our bedroom as the focus of infestation 83-

85. 
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Mite bodies and mite feces are the predominant source of many allergens. Fecal pellets are 

composed of food, debris and proteolytic enzymes, bound together by mucus and covered in 

a chitinous peritrophic membrane. The average intact mite dropping is 10 – 40 μm in 

diameter which can be deposited in the conducting airways after inhalation 86. Allergens 

associated with mite fecal matter are enzymes that originate from the mite’s digestive tract. 

Other sources of allergens may be components of the mite saliva, or soluble proteins in their 

body fluids 84. 

 

2.4.2. House dust mite allergenicity 

 

Allergenicity is the property of being an allergen or being able to induce allergic 

sensitization.  Moreover, the ability of an allergen to induce IgE is a measure of the allergic  

Table 1: Characterized allergens of the HDM species D. pteronyssinus. 
Adapted from Gregory et al. Trends Immunol. 2011 Sep;32(9):402-11. 
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state. HDM fecal pellets contain many allergens with either proteolytic activity or enhanced 

TLR stimulatory capacity. D. pteronyssinus produces more than 20 different allergen groups, 

classified according to their sequence homology and biological function (Table 1) 87,88. Of the 

19 denominated allergens, the major IgE binding capacity has been reported for the group 1, 

2, 3, 7, 9, 11, 14 and 15 allergens.  

 

The first major mite allergen identified is Der p 1, a member of the group 1 allergens. Group 

1 allergens are cysteine proteases that share sequence identity with the catalytic site of the 

plant enzyme papain 89. Der p 1 cleaves intracellular tight junctions proteins, with putative 

proteolysis sites identified in occludin and claudin-1 90. Der p 1 can promote the PAR-2-

mediated release of proinflammatory cytokines, such as IL-6 and IL-8 91. Der p 1 allergens are 

ubiquitous in house dust.  Levels starting from 100 ng/g carpet dust are associated with 

increased sensitization risk 92.  

The second major HDM allergen Der p 2 does not possess intrinsic proteolytic activity, 

although recently found to be very allergenic. Trompette et al. demonstrated that Der p 2 

has structural and functional homology with MD-2, the chaperone protein necessary for 

TLR4 signalling. Der p 2 reconstituted the LPS-driven TLR4 activation in the absence of MD-2, 

suggesting the auto-adjuvant activity of Der p 2 93. This is of special importance for the lung, 

as airway epithelial cells express TLR4, but little or no MD-2 94. 

Der p 3, 6 and 9 represent the three HDM serine proteases which display tryptic, 

chymptryptic and collagenolytic activities, respectively. Together with group 1 allergens, 

they account for almost 79% of the proteolytic activity found in house dust 95. Similar to mite 

cysteine proteases, they induce increased epithelial permeability through the cleavage of 

occludin and ZO-1 96. 

Der p 7 and Der p 14 are lipid-binding proteins. They elicit strong IgE and T-cell responses in 

patients with mite allergy. Recently, Der p 7 is found to be similar to the LPS-binding protein 

which interacts with TLRs after binding LPS and other bacterial-derived lipid ligands 97. The 

discovery that group 7, as well as group 2 allergens, are structurally similar to different 

proteins in the TLR pathway, further strengthens the connection between dust mite 

allergens, innate immunity and allergy 87. 
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In addition to the diverse array of protein allergens, we should not underestimate the role of 

the non-protein compounds present in dust mites. HDM extracts are often contaminated 

with low endotoxin levels. Bartonella or other Gram-negative species are thought to be the 

source of this LPS content 98. Phipps et al. found that mice deficient for MyD88 or the LPS 

receptor TLR4, do not develop common features of allergic asthma 99. Recently, Hammad et 

al. elegantly demonstrated that TLR4, present on epithelial cells, activates Th2 cell immunity 

to HDM allergens, through the release of pro-innate cytokines 40. Together, these 

observations suggest an important role for the low LPS content present in dust mite extracts. 

The glucose-derived β-glucan moieties within HDM extract were shown to participate in the 

early events of allergic airway disease. β-glucan motifs stimulate epithelial cells to release 

CCL20, which is a major chemokine for the attraction of lung DCs 37.  

Also other contaminating products might regulate HDM-induced allergic disease. Chitin, a 

glucosamine-based polymer which is part of the mite exoskeleton, induces the accumulation 

of IL-4 expressing eosinophils and basophils in the murine lung 100,101. 

 

2.4.3. The use of HDM extract in experimental research: benefits and pitfalls 

 

The identification and isolation of mites from house dust, and the ability to grow them in 

culture, have led to the production of HDM extracts currently used in research. HDM 

extracts are made from an aqueous extraction of a variable mixture of whole mites, nymphs, 

fecal pellets, eggs and spent culture medium. Based on the number of proteins they contain, 

and based on the production methods they use, extracts are difficult to standardize. Since 

allergenicity originates from mites and their fecal pellets, only extracts containing high 

concentrations of both body and fecal allergens should be used in clinical testing and 

therapy. It is however possible that some allergens are highly abundant in the environment 

but poorly represented in the extracts. This could be due to a poor extraction process (e.g. 

due to hydrophobicity) or may be the result of protein lability. Der p 3, 7 and 14 for example 

are shown to be unstable in aqueous solutions 102. Furthermore, the complexity of HDM 

extracts makes it difficult to understand the contribution of the different HDM elements. 

Although it would be very interesting to clarify the function of each individual allergen, 

humans are not exposed to one single protein, but to a whole range of compounds. To 
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capture the full complexity of HDM allergens, we need to design preclinical mouse models, 

using HDM extracts in their entirety. 

 

The use of HDM to model asthma has some interesting benefits. HDM is one of the most 

important real-life allergens associated with allergic disease, and is clinically far more 

relevant than the previously used model innocuous antigen ovalbumin (OVA) 103. Some HDM 

proteins posses intrinsic Th2-promoting adjuvant activity and have the capacity to induce 

natural sensitization through the respiratory tract 104. Whereas prolonged OVA exposure 

induces inhalation tolerance rather than allergic inflammation 105, HDM can mimic the 

chronicity of human asthmatic disease. Johnson et al. described a murine model of 

intranasal HDM delivery for up to 7 weeks, showing sustained eosinophilic airway 

inflammation along with severe structural changes of the airway wall (goblet cells, collagen 

deposition, increased smooth muscle content) 106.  

 

2.5. Cigarette smoke exposure 

 

Smoking is one of the most common addictions of modern times and a risk factor for 

respiratory diseases like asthma and COPD.  Although the devastating health impact of CS is 

well known, over 1 billion people continue to smoke. 

  

2.5.1. Introduction 

 

CS is an aerosol of liquid droplets (particulate phase) suspended within a mixture of gases 

and semi-volatile compound (gaseous phase). More than 4000 chemicals have been 

identified within CS, including carcinogens (PAHs, tobacco specific nitrosamines, acrolein), 

noxious gases (CO, NOx) or toxic compounds (nicotine, acetone) 107,108.  

Two different emissions can be distinguished, both with different composition and 

properties. Mainstream cigarette smoke is the smoke actually drawn into the mouth during 

puffs (active smoking), whereas sidestream smoke is released from the smoldering end of 

the cigarette. Additionally, the term environmental tobacco smoke (ETS) is used as a mixture 

of sidestream smoke and exhaled mainstream smoke after dilution and aging. Inhalation of 

ETS is called ‘unvoluntary’ or passive smoking 109.  
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2.5.2. Epidemiology of cigarette smoking and asthma ¥ 

 

CS is a major risk factor for the promotion or aggravation of asthmatic disease. However, 

due to differences in composition, the impact of ETS and active smoking on allergic 

sensitization and ensuing asthma development, may differ to some extent. 

 

A large body of evidence establishes a link between ETS exposure and the increased risk for 

asthma development 110,111. Both in utero maternal smoke exposure 112 as well as early 

postnatal exposure 113 or any parental smoking at home significantly increases the risk of 

developing asthma later in life 112,114. The risk for childhood asthma, wheeze or chronic 

cough even increases with the number of parents who smoke 115.  

The relationship between allergic sensitization and ETS exposure is however, less evident 
116,117. ETS exposure promotes the induction of Th2 cytokines in the nasal fluid of allergic 

patients 118, and increases the sensitization risk in children where both parents are allergic 
119. Furthermore, ETS exposure is dose-dependently correlated with greater asthma severity, 

diminished lung function and poorer asthma control, both in children 120,121 and adults 122-124. 

 

Unlike ETS, the impact of active smoking on asthma development is more controversial. 

Active smoking increases asthma prevalence 125,126 and the risk of new onset asthma 127, 

especially among patients with allergic rhinitis 128,129 and those adults exposed to maternal 

smoke in utero 130. Current smoking is associated with increased disease severity 131, higher 

severity scores 132 and less controlled asthma 133-135. Moreover, smoking asthmatics have an 

accelerated decline in lung function, which may improve after smoke cessation 136. Finally, 

current smokers have an increased risk for the sensitization to HDM allergens, but not for 

grass pollen or cat allergens 137. 

 

The clinical manifestations and inflammatory responses between smoking asthmatics and 

patients with COPD may, in some individuals, overlap. In addition, a long duration of asthma 

and a high pack year smoking history may ultimately result in the development of COPD.  

 

 

¥ Based on ‘Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway 
inflammation.’ Maes T, Provoost S, Lanckacker EA, Cataldo DD, Vanoirbeek JA, Nemery B, Tournoy KG, Joos GF. 
Respiratory Research. 2010;11:7. 
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2.5.3. Animal models of cigarette smoking and asthma 

 

In contrast to the clinical relevance, most animal models of asthma used to rely on OVA as 

“surrogate” allergen. OVA is no naturally occurring allergen and is not associated with any 

form of asthma in real life, however most of the insights regarding the mechanisms 

underlying asthmatic disease, result from mouse models of OVA-induced experimental 

asthma.  

 

Murine models, investigating the role of CS (ETS versus active smoking) on asthma 

pathogenesis, discriminate between the impact on sensitization and asthma development or 

aggravation. Results from animal models with 138,139 or without 140-143 prior sensitization to 

OVA, all agree that ETS exposure may facilitate allergic sensitization, as demonstrated by 

increased serum IgE, eosinophil counts, Th2 cytokines, airway hyperresponsiveness and/or 

the development of a memory response 140. However, the role of active smoking as an 

adjuvant for allergic sensitization in mice is less univocal. Some studies indicate that active 

smoking may break inhalation tolerance to OVA 144-146, whereas others do not 146,147. In 

addition, different animal studies have demonstrated a role for ETS in the development 
138,139 or aggravation of “established” asthmatic disease 148. In utero maternal ETS exposure 

aggravated subsequent adult responses to OVA 143. In contrast to the reports on ETS, the 

results of active smoking on the development and aggravation of asthma are again 

controversial 147,149-154, probably because of the dose-dependent effect of CS as adjuvant or 

anti-inflammatory agent 146,151. 

 

As we learned from Chapter 2.4, real-life allergens such as HDM, are far more complex than 

OVA, which is a single chicken egg protein. The difference in biochemical and immunogenic 

character between OVA and common aeroallergens may have an impact on the nature of 

the elicited allergic response and may even impact the relevance of the murine asthma 

model. Recently, a few animal studies already used HDM in combination with CS. Botelho et 

al. demonstrated an attenuated effect of CS on “established” HDM-induced asthma 155, 

whereas Blacquière et al. showed that maternal smoking during pregnancy induces airway 

remodeling in HDM-exposed adult mice offspring 156.  
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3.1. Introduction 

 

Chronic obstructive pulmonary disease (COPD) is a major cause of illness and death 

worldwide. The disease affects about 10% of the general population and is predicted to be 

the third leading cause of death by 2030 19.  

COPD is a chronic inflammatory condition, characterized by progressive and poorly 

reversible obstruction of the smaller airways of the lung. Patients suffering from COPD 

experience abnormal sputum production, chronic cough, wheezing and shortness of breath. 

Cigarette smoking is by far the most important risk factor for the development of the 

disease, however only 20 to 30% of heavy smokers develops COPD, suggesting that genetic 

factors might be important during the disease process 157. 

Despite similarities of some clinical features between asthma and COPD, there is a marked 

difference in the location and pattern of inflammation, linked to differences in the 

immunological mechanisms underlying the disease, and differences in therapy. 

Typical hallmark features of COPD pathophysiology include chronic inflammation, lymphoid 

follicle formation, emphysema and airway wall remodeling (Figure 6).  

 

Figure 6: Immunological aspects of chronic obstructive pulmonary disease.  Figure by Lanckacker EA. 
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3.1.1. Pulmonary inflammation in COPD 

 

The inflammatory disease pattern observed in smokers and patients with COPD is diverse in 

many respects. The accumulation of inflammatory components appears to contribute to 

lung injury and serves as a self-perpetuating stimulus for further immune activation. The 

cellular composition of the infiltrates varies among patients, but there is typically an 

accumulation of macrophages, neutrophils, CD8+ cytotoxic T cells, and to a lesser extent 

CD4+ Th1 lymphocytes 158. 

 

Macrophages orchestrate the inflammation in COPD through the release of chemokines, 

attracting neutrophils (chemokine CXC ligand (CXCL)-1, CXCL-8), monocytes (CCL2) and T 

lymphocytes (CXCL9, CXCL10, CXCL11) to the airways and lungs (Figure 6). Moreover, 

macrophages release a whole repertory of proteolytic enzymes (matrix metalloproteinase 

(MMP)9, MMP12, cathepsins) suggesting a potential role during tissue damage and 

emphysema 159. Increased numbers of activated neutrophils are found in sputum from 

smokers and patients with COPD. Neutrophils are a potent source of inflammatory 

mediators, including ROS and tissue destructive proteases, such as neutrophil elastase, 

MMPs or cathepsin G. Neutrophil proteases may contribute to alveolar destruction and are 

potent stimuli of mucin production and secretion 160,161. Upon the release of CXCL-9, -10 and 

-11 by macrophages, T lymphocytes (which are predominantly CD8+ cytotoxic T-cells (Tc)) 

accumulate in the airways and lungs. Lung CD8+ T cells may contribute to the progression of 

COPD through the release of cytolytic enzymes (perforin, granzyme B) responsible for 

apoptosis or necrosis of structural cells (e.g. epithelial and endothelial cells) 162,163. Although 

less abundant, CD4+ Th1 lymphocytes are also found in smokers with COPD, and at least two 

subtypes have been found. CD4+ Th1 cells are largely responsible for the production of high 

levels of the Th1-typical cytokine interferon (IFN)-γ, whereas CD4+ Th17 cells regulate tissue 

inflammation by producing IL-17A and IL-17F. 

 

3.1.2. Lymphoid follicles in COPD 

 

Lymphoid neogenesis refers to the development of organized lymphoid structures which act 

as secondary lymphoid organs during sustained chronic inflammation. Lymphoid follicles are 
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associated with severe COPD and are known to participate in adaptive humoral and T cell 

mediated responses to antigen 164,165.  

 

Lymphoid tissue formation is the result of a highly coordinated interplay between 

inflammatory cells, resident stromal cells, adhesion molecules, chemokines and cytokines 

(Figure 6). Upon chronic inflammation, activated lymphocytes express lymphotoxin-α1β2 

(LTα1β2) on their surface membrane. Binding of LTα1β2 to the respective lymphotoxin-β 

receptor (LTβR) on neighbouring stromal cells (probably fibroblasts or fibroblast precursors), 

induces the expression of adhesion molecules (intercellular adhesion molecule (ICAM)-1, 

VCAM-1) and chemokines 166,167. Homeostatic lymphoid chemokines orchestrate lymphocyte 

homing and compartimentalization of the lymphoid organ. CCL19 and CCL21 attract CCR7+ T 

lymphocytes and mature DCs to the T cell zone of the follicle, whereas CXCL13 attracts 

CXCR5+ B cells and is involved in germinal centre formation. Persistent chronic inflammation 

will stimulate lymphoid aggregates to become highly organized lymphoid follicles, with 

follicular DCs, Ig-producing plasma cells, and high endothelial venules, which allow the 

additional supply of naïve lymphocytes 168. 

 

It is however not clear yet, whether lymphoid follicles are beneficial or not. Lymphoid 

follicles may develop as a local back up mechanism to protect against infectious agents or 

may be a source of auto-antibodies, maintaining the ongoing inflammatory response 165.  

 

3.1.3. Airway wall remodeling and emphysema in COPD 

 

Whereas in asthma, remodeling is mainly located in the larger airways of the lung, it 

predominantly affects the smaller airways and the alveolar wall in COPD patients. Especially 

peripheral airway wall fibrosis, goblet cell metaplasia and emphysema can be distinguished. 

Emphysema is the abnormal enlargement of air spaces in the lung and results from 

destruction of tissues supporting the alveolar wall (elastin breakdown) 169. Destruction of 

lung parenchyma may be the result of an imbalance between proteases and antiproteases. 

As a clinical outcome, emphysematous lung destruction reduces maximal expiratory airflow 

by decreasing the natural elastic recoil force that drives the air out of the lungs 170.  
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3.2. Exacerbations 

 

The natural history of COPD is typically interrupted by acute exacerbations or acute 

aggravation of symptoms. Exacerbations accelerate the decline in lung function, resulting in 

reduced physical activity, poorer quality of life and an increased risk of death.  

Despite the importance of exacerbations, we know relatively little about their incidence, 

their determinants and their immunological effects in COPD. 

 

Exacerbations are usually triggered by either bacterial or viral respiratory tract infections. 

The most commonly isolated bacterial species are nontypable Haemophilus influenzae, 

Streptococcus pneumonia and Moraxella catarrhalis. The major respiratory viruses 

associated with COPD exacerbations are rhinovirus, influenza or respiratory syncytial virus 

(RSV) (Table 2) 171.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Microbial pathogens in COPD.  
Adapted from Sethi et al. N Engl J Med. 2008 Nov 27;359(22):2355-65. 
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Approximately 25% of patients with stable COPD show bacterial colonization of the lower 

respiratory tract, and even higher bacterial counts (50%) are observed during acute 

exacerbations 172.  

The reason for the increased incidence of pulmonary bacterial colonization in patients with 

COPD may be failure of their macrophages to clear pathogens due to reduced phagocytic 

capacity 173,174. Moreover, inflammatory mucus exudates present in the airways of patients 

with COPD, are the ideal soil for bacterial colonization and growth. 

 

COPD exacerbations are associated with increased pulmonary and systemic inflammation. 

Almost all COPD exacerbations are marked by increased sputum neutrophilia, and, or 

eosinophils during viral infections. The presence of microbial PAMPs due to invading 

pathogens, increases the expression of PRRs, which may lead to a subsequent increase of 

neutrophils. Furthermore, a specific antibody response will be generated, characterized by 

increased production of serum IgG and tissue-local production of protective mucosal IgA 158. 

 

3.3. Disease modifying role of Staphylococcus aureus enterotoxins 

 

Although bacterial Staphylococcus aureus (S. aureus) has only infrequently been isolated 

from the airways of patients with COPD exacerbations (Table 2), significantly increased 

levels of IgE antibodies against S. aureus enterotoxins have been identified in serum 175. 

Therefore, the role of these superantigens, as potential aggravating factor of COPD 

pathogenesis, might be underestimated. 

 

S. aureus is an opportunistic pathogen, which is part of the normal microflora of the human 

skin and upper respiratory tract. About 25% of healthy persons may be persistently or 

transiently colonized. Although nasal carriage is a predictor for staphylococcal infections, 

colonization does not ordinarily cause disease 176. Especially impaired mucosal barrier 

function, due to injury of environmental insults, creates the “opportunity“ for the pathogen 

to infect 177. Once they are infiltrated, S. aureus strains secrete a number of pyrogenic toxins, 

known as superantigens because of their potent immunostimulatory effects. Unlike 

conventional antigens, they bind to MHCII molecules outside the antigen-binding groove and 

are presented as unprocessed proteins to certain T cells expressing specific T-cell receptor 
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(TCR) Vβ genes (Figure 7). As a consequence, superantigens stimulate up to 20% of T cells 

while only 1 in 105-106 cells are activated upon normal antigen presentation. Among the 19 

different exotoxins synthesized and released by S. aureus, toxic shock syndrome toxin-1 

(TSST-1) and enterotoxins A, B, C, D and E are the best known 178,179. 

 

 

 

 

 

 

 

 

 
 

Clinical evidence for a role of S. aureus enterotoxins (SEs) in skin and airway allergies have 

been well documented. Atopic dermatitis patients are frequently colonized with S. aureus 

and the presence of enterotoxin specific antibodies is positively correlated with disease 

severity 180,181.  

Also in patients with chronic rhinosinusitis, an increased colonization rate of S. aureus has 

been found, especially in patients with nasal polyps 182. Remarkably, 40% of nasal polyposis 

patients develops lower respiratory tract conditions later in life, mainly severe asthma. 

Recently, the group of Bachert et al. hypothesized a possible causal role for S. aureus 

enterotoxin IgE, instead of allergenic IgE, as a risk factor for the development of severe 

asthmatic disease in nasal polyposis patients 183. 

 

Experimental data have suggested S. aureus enterotoxins as disease modifying agents. As 

shown by in vitro studies, SEB exerts a direct pro-inflammatory effect on human nasal 

epithelial cells (HNEC). SEB stimulation of freshly isolated HNECs, induces chemokine (e.g. 

CCL-2) and growth factor release (e.g. GM-CSF), resulting in the recruitment and prolonged 

survival of granulocytic cells 184. Furthermore, SEB drives the maturation of human 

monocyte-derived DCs and promotes Th2 cell polarization, probably through TLR2 signaling 
185,186. 

Figure 7: Presentation of conventional antigens versus superantigens. 
Figure by Lanckacker EA, based on Papageorgiou et al. Structure 1997 Aug 15;5(8):991-6. 
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Using in vivo animal studies, S. aureus enterotoxins were shown to aggravate allergic airway 

inflammation in mice 186,187. Moreover, SEB is able to facilitate allergic sensitization to the 

innocuous antigen OVA. Concomitant inhalation of SEB and OVA augmented DC migration 

and maturation as well as enhanced allergen-specific T lymphocyte proliferation 188. 

However, the disease modifying role of S. aureus enterotoxins in CS-induced pulmonary 

diseases has not been investigated yet. 
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In the past, animal models have been useful to provide valuable insights regarding the 

mechanisms of a disease or to predict the safety and efficacy of potential therapeutic drugs. 

To be clinically relevant, animal models need to mimic the pathogenesis, as well as the 

heterogeneity of the underlying disease. Phenotypic heterogeneity mainly results from the 

complex environment we are exposed to, with the emphasis on bacteria, viruses and 

ambient air pollution. However, most of the current animal models, mimicking asthma or 

COPD, do not account for this complexity/do not reflect what happens during natural 

exposure when atmospheric pollution mixtures are inhaled. It is thus a challenge to improve 

the clinical relevance of existing animal models, using combined exposures. Such 

combination models will be valuable tools to unravel potential synergistic effects between 

different environmental compounds and to study how these compounds may impact the 

underlying disease (heterogeneity). 

 

The aims of this thesis were four-folded: 

 

i. The role of cigarette smoke in the development of ovalbumin-induced asthma in 

mice: In our lab, Moerloose et al. already established a murine model, in which 

cigarette smoke (CS) exposure facilitates primary allergic sensitization to an 

otherwise innocuous antigen, ovalbumin (OVA). We wanted to elucidate the impact 

of CS on innate immunity and focused on the key innate immune sensors of the lung, 

the airway DC.  Furthermore, we hypothesized a role for the endotoxin-like effects 

of CS as an adjuvant to facilitate airway sensitization in mice and explored a 

possible role for the TLR4 – MyD88 pathway in our model.  

 

ii. The role of cigarette smoke in the development of house dust mite induced-allergic 

asthma – development of a mouse model: Epidemiological studies designate 

cigarette smoke (CS) as a major risk factor for the development of asthma in children 

and adults. Hence, we hypothesized that CS may facilitate the allergic sensitization 

to common real-life aeroallergens. In a first step, we aimed to design a clinically 

relevant mouse model, using low doses of HDM as common indoor allergen, 

combined with CS as major indoor pollutant. Such a combination model may be very 

useful to investigate how CS adversely affects allergic immune responses in the lung 
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and how it may impact asthma therapy. In a second step, we tried to elucidate the 

relative contribution of CS during both sensitization and ensuing asthma 

development. Thirdly, we investigated whether a very short smoke exposure is 

sufficient to induce sensitization towards HDM allergens. And finally, we aimed to 

unravel the impact of short CS exposure on the airway dendritic cell (DC).  

 

iii. The role of the respiratory epithelium during cigarette smoke-induced facilitated 

sensitization and asthma development in mice – preliminary report: Epidemiological 

studies, as well as mouse models of asthma, already revealed a crucial role for the 

airway epithelium in asthmatic disease. Because CS acts as a predisposing factor for 

asthma, we hypothesized a role for the airway epithelium during CS-induced 

facilitated sensitization and disease progression. In a first step, we wanted to 

investigate changes in epithelial barrier function after short CS inhalation during 

primary allergen contact. In a second step, we aimed to elucidate the role of the IL1RI 

signaling pathway during enhanced early sensitization, whereas finally, we aimed to 

unravel the role for danger-associated molecular pattern molecules during CS-

induced facilitated asthma development. 

 

iv. The disease modifying role of bacterial superantigens in CS-induced pulmonary 

inflammation – development of a mouse model: Although Staphylococcus aureus (S. 

aureus) is only infrequently isolated in COPD patients, Rohde et al. identified 

significantly increased levels of IgE antibodies against S. aureus enterotoxins in serum 

of patients with COPD. Hence, we hypothesized a role for S. aureus enterotoxin B 

(SEB) as potential aggravating factor of COPD pathogenesis. We aimed to design a 

novel murine model of concomitant exposure to CS and SEB and to investigate the 

impact of SEB on CS-induced pulmonary and systemic inflammation as well as 

lymphoid follicle formation and the induction of goblet cells. Such aggravation 

models may be very useful to elucidate immunological changes during acute 

exacerbations of COPD. 
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5.1. The development of combined exposure models 

 

5.1.1. Murine model of CS-induced inflammation  

 

Our research group developed a murine CS-exposure model, closely mimicking the 

important hallmark features of COPD (Chapter 3). All combination models used in the thesis 

are based on this CS exposure protocol 1-3. For the detailed description, see Chapter 5.2.1. 

 

5.1.2. Murine model of concomitant OVA and CS exposure 

 

In our lab, Moerloose et al. already established a mouse model in which simultaneous 

inhalation of aerosolized OVA (grade III, Sigma-Aldrich, Bornem, Belgium) together with CS, 

induces features of allergic airway inflammation. To answer the research questions 

described in the aims of the thesis (Chapter 4.i), experiments were based on this 

combination model. For detailed information about the design of the protocol, we refer to 

the paper of Moerloose et al 4. 

 

5.1.3. Murine model of simultaneous HDM and CS exposure 

 

To unravel the impact of CS on the different stages of asthma pathogenesis, we designed a 

clinically relevant combination model of HDM and CS, based on current protocols. 

The majority of the HDM-driven asthma models used today, are based on work published by 

Jordana et al. The intranasal administration of HDM extract (25 μg protein/10 μl saline) once 

a day, 5 days/week for up to several weeks, mimics asthma-like lung inflammation 5 as well 

as the chronicity of the disease 6. However, the daily application of HDM makes it difficult to 

distinguish between the sensitization or allergen challenge phase. More recently, Hammad 

et al. described an acute HDM exposure model (100 μg protein/40 μl saline) with clear 

contrast between the different phases of asthma development (HDM sensitization on day 0, 

allergen challenge on days 7 and 14) 7. Hence, we based our combination model on the 

protocol of Hammad et al. but opted to instill 4 times less HDM (Greer Laboratories, Lenoir, 

NC,USA) in order to evaluate potential aggravating effects upon concomitant CS inhalation. 

Th2-prone Balb/c mice were used to set up the combination model. Because Balb/c mice are 
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considered to be more sensitive to CS than C57Bl/6 mice, we decided to lower the intensity 

of our classic CS exposure protocol (Chapter 5.2.1) (3 instead of 4 times, 5 cigarettes/day). 

Depending on the research aims (Chapter 4ii, 4iii), the duration of the exposure period 

varied from 3 to 17 days.   

 

5.1.4. Murine model of combined SEB and CS exposure 

 

To investigate the role of SEB on CS-induced inflammation, we based our model on the 

publication from Hellings et al, studying the effect of SEB on allergic airway inflammation 8. 

The dose of SEB, chosen for our protocol, was in line with dosing experiment by Hellings et 

al.  Pilot studies, carried out with nasal or bronchial applications of 5, 50 and 500 ng SEB, 

demonstrated that 500 ng SEB potently altered bronchial inflammation without clinical signs 

of wasting disease. Hence, 500 ng SEB (10 μg/ml) (Sigma-Aldrich, Bornem) was chosen to set 

up this model. Starting from week 2 of the classic CS exposure protocol (Chapter 5.2.1.), SEB 

was administered intranasally (see Chapter 5.2.2.) in C57Bl/6 mice on alternate days. 

 

5.2. Methodology 

 

5.2.1. CS-exposure protocol 

 

Practically, 8 to 10 mice are placed in a plexiglass chamber (7500 cm3) and are subjected to 

whole body mainstream CS of 5 simultaneously lit Kentucky Reference cigarettes (2R4F or 

3R4F without filters, University of Kentucky, Lexington,KY). This procedure is repeated 4 

times a day and is interrupted by a 30 minute smoke free interval to mimic the typically 

interrupted smoking pattern, observed in human smokers. Because mice do not tolerate 

undiluted CS, an optimal smoke:air ratio of 1:6 is obtained during the whole protocol. The 

CS-exposure model is classically performed in non-atopic C57Bl/6 mice, regarded as a Th1 

dominant mouse strain with moderate sensitivity to CS. 

The serum carboxyhemoglobin levels of CS exposed mice (8.35 ± 0.46% vs. 0.65 ± 0.25% in 

air exposed mice)9 are comparable to those measured in human smokers 10 or young 

children exposed to secondhand CS 11. Furthermore, 4 weeks of CS exposure are sufficient to 

mimic CS-induced pulmonary inflammation, as observed in human smokers. However, the 
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typical characteristics of COPD pathogenesis, including emphysema, lymphoid follicle 

formation and airway wall remodeling, are obtained after a more chronic exposure period of 

24 weeks.  

 

5.2.2. Intranasal instillation 

 

The intranasal application of HDM or SEB is performed in isoflurane (Forene, Abbott, Wavre, 

Belgium) anesthetized mice, using a continuous flow vaporizer (Harvard Apparatus, 

Edenbridge, UK) (Figure 8A). The mice are manually restrained with the tail anchored 

between the small finger and the palm and are held in a supine position with the head 

elevated (Figure 8B). The end of the micropipette is placed at the external murine nares and 

the solution is poured in slowly, causing a rapid increase of the breathing rate. A delivery 

volume of 35 à 40 μl is known to give a maximum distribution of fluid in the lungs, with 

increasing volumes resulting in greater relative dosing to the lungs 12. As illustrated in Figure 

8C, 40 μl of cardio green (Sigma-Aldrich, Bornem) nicely deposited in the different lobes of 

the lungs.  

 

 

 

 

 

 

 

 

 

A 

Figure 8: Intranasal instillation of isoflurane anesthetized mice. 
A. Isoflurane flow vaporizer; B. Intranasal instillation; C. Cardio green deposition in the lungs. 
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5.2.3. Experimental techniques 

 

After completion of the exposure protocol, murine blood and tissue samples are collected 

and processed to study pulmonary and systemic manifestations. An overview of the 

collected tissues and their applications is illustrated in Figure 9, followed by a short 

introduction of the applied techniques. More detailed information about the following 

techniques can be found in the Methods section of the original research work (Chapter 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3.1. Blood 

 

Blood is collected from the retro-orbital sinus, located behind the murine eye, and is used to 

detect specific antibody activity by means of serum immunoglobulins.  

 

Figure 9: Overview of the murine samples collected during the endpoint. 
Figure by Lanckacker EA 

68



 

69 

5.2.3.2. Bronchoalveolar lavage 

 

To obtain inflammatory cells from the bronchial and alveolar zones of the lung, we 

performed bronchoalveolar lavage. Practically, a tracheal cannula is inserted and a salt 

solution is instilled and withdrawn gently, resulting in 2 fractions. After centrifugation, the 

cell-free supernatant of the first fraction is stored to assess cytokine levels by means of ELISA 

(enzyme-linked immunosorbant assay) or multiplex assays (Merck Millipore, Brussels, 

Belgium) (CBA, Becton Dickinson, Erembodegem, Belgium), whereas the cell pellets of the 

first and second fraction together are used to enumerate and differentiate cells by means of 

cytospin (Figure 10) and flow cytometry (Chapter 5.2.2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

Cytospins stained with May-Grünwald-Giemsa (Sigma-Aldrich, Bornem) (VWR, Leuven) are 

used to perform differential cell counts, based on standard morphological criteria of the 

cells. Macrophages are large mononuclear cells with abundant cytoplasm, enriched with 

numerous cytoplasmic granules. Neutrophils, also called polymorphonuclear neutrophilic 

leukocytes, have a fragmented multi-lobed nucleus (usually three fragments), with barely 

stained cytoplasm after May-Grünwald Giemsa. Eosinophils are characterized by their 

doughnut-shaped nucleus and their pink cytoplasm, indicative of eosinophilic granules. 

Lymphocytes are generally smaller than the previous leukocytes and have a rather big 

round-shaped nucleus with a high nuclear to cytoplasmic ratio (Figure 10). 

 

Figure 10: Cytospins of BAL fluid stained with May-Grünwald-Giemsa. 
1. macrophage; 2. neutrophil; 3. eosinophil; 4. lymphocyte. 
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5.2.3.3. Single cell suspensions 

 

To perform lymph node cultures (Chapter 5.2.2.4) or flow cytometry (Chapter 5.2.2.5) of the 

lungs, single cell suspensions are required. Practically, removed tissues are incubated with 1 

mg/ml collagenase type 2 (Worthington Biochemical, Lakewood, NY) and 0.02 mg/ml DNase 

I (grade II from bovine pancreas, Boehringer Mannheim, Brussels, Belgium) for 45 min at 

37°C and 5% CO2. Red blood cells are lysed using ammonium chloride buffer () and finally, 

cell suspensions are filtered through a 50 μm nylon mesh to remove undigested organ 

fragments.  

 

5.2.3.4. Lymph node culture 

 

To determine the cytokine expression profile within lung draining lymph nodes, mediastinal 

lymph nodes (Figure 9) are removed and digested as described before (Chapter 5.2.2.3). 2 x 

105 cells are cultured in 96-well plates, with or without  15 μg HDM extract/ml culture 

medium. After 5 days in a humidified 5% CO2 incubator at 37°C, culture supernatant is 

harvested to measure typical Th1, Th2 or Th17 cytokines. 

 

5.2.3.5. Flow cytometry 

 

Flow cytometry is a technique used to characterize different cell populations based on cell-

specific phenotypic markers, on or inside the cell. Briefly, antibodies conjugated to 

fluorescent dyes are used to label specific markers on each single cell. When laser light of 

the flow cytometer strikes the fluorescent dye, a fluorescent signal with a certain 

wavelength (read: ‘color’) is emitted and measured by the flow cytometer.  

 

To perform flow cytometry, single cell suspensions  from BAL or the third lobe of the right 

lung (see Chapter 5.2.2.3) are pre-incubated with FcR-blocking antibody (anti-CD16/CD32, 

clone 2.4G2) to minimize non-specific binding of the antibodies. The combination of various 

cell-specific monoclonal antibodies with different fluorescent dyes, allows researchers to 

fully characterize differential cell populations within BAL and lung.  
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The cells described in the thesis are characterized as illustrated in Figure 11. Macrophages 

are defined as high autofluorescent, CD11c+cells (Figure 11A). DCs are low autofluorescent, 

CD11c+ MHCII+ cells and CD11b+ or CD11b- DCs can be distinguished (Figure 11B). T-

lymphocytes are characterized as small, CD3+ cells and various subpopulations exist. In this 

thesis, we identify CD4+ and CD8+ T-lymphocytes in BAL and lung and we further characterize 

the activation status of lung T-cells using CD69 as activation marker (Figure 11C). 

 

 
 

 

5.5.3.6. Lung homogenate 

 

Lung tissue homogenates are prepared to determine the cytokine profile of the lung by 

means of ELISA or multiplex. Practically, the middle lobe of the right lung is minced 

mechanically (TissueRuptor, Qiagen, Hilden, Germany) into 1 ml T-Per tissue protein 

Figure 11: Gating strategy for the characterization of inflammatory cells in BAL and lung. 
A: macrophages; B: CD11b+ DCs; C: CD4+ and CD8+ T-lymphocytes, activated (CD69+) or not (CD69-). 

71



 

72 

extraction reagent completed with 10 μl Protease Inhibitor Cocktail Kit (Thermo Fisher 

Scientific, Waltham, MA, USA). The total protein concentration is defined using the Bradford 

protein assay (Bio-Rad Laboratories, Hercules, CA, USA) and lung homogenates are diluted 

until a final protein concentration of 500 μg/ml is attained. 

 

5.5.3.7. Real time RT-PCR 

 

Real-time reverse transcriptase (RT)-PCR has proven to be a powerful tool to quantify gene 

expression profiles. Briefly, total lung mRNA is extracted from the first lobe of the right lung, 

using the RNeasy Mini kit (Qiagen, Hilden, Germany). The expression of IL-13, MIP-3α, 

CXCL13, CCL19 or CCL20 mRNA relative to the housekeeping gene Hprt (hypoxanthine 

guanine phosphoribosyl transferase) is analysed, using Assay-on-Demand gene expression 

products (Applied Biosystems, Halle, Belgium) or custom designed probes synthesized on 

demand 13. RT-PCR is performed on a LightCycler 480 Instrument (Roche Diagnostics, Basel, 

Switzerland) with murine leukemia virus reverse transcriptase (Applied Biosystems, Halle) 

under previously described conditions 13,14. 

 

5.5.3.8. Histological evaluation 

 

After the left lung is fixed in 4% paraformaldehyde (Klinipath, Olen, Belgium) and embedded 

in paraffin, transversal sections of 3 μm are subjected to chemical (periodic acid-Schiff (PAS), 

Congo Red, toluidin blue staining) or immunohistochemical stainings (α-smooth muscle 

actin, E-cadherin, hyaluronic acid, CD3/B220 double staining).  

Quantitative measurements are performed in a blinded fashion, using a Zeiss KS400 Image 

Analyzer (Oberkochen, Germany). The following morphometric parameters are marked 

manually on the digital representation of the airway (Figure 12): the length of the basement 

membrane (Pbm), the area defined by the basement membrane (Abm), and the area defined 

by the total adventitial perimeter (Ao). Furthermore, the total bronchial wall area (WAt) is 

calculated as WAt = Ao – Abm and normalized to the square length of the Pbm. All airways 

with a 800 μm < Pbm < 2000 μm and cut in reasonable cross-sections (defined by a ratio of 

minimal to maximal internal diameter > 0.5) are included. Measurements are performed on 

at least 5 airways per mouse. 
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Goblet cells are quantified after PAS staining (Klinipath, Olen) and the number of PAS-

positive cells are expressed per millimeter Pbm. Peribronchial infiltration of eosinophils is 

evaluated after Congo Red (Klinipath, Olen) staining and determined as the total number per 

mm2 bronchial wall area (WAt). Mast cells are highlighted after toluidin blue staining (Fluka, 

Bornem) and counted per field (whole left lung lobe). Quantification of α-smooth muscle 

actin (Abcam, Cambridge, UK), E-cadherin (BD Biosciences, Erembodegem, Belgium) or 

hyaluronic acid deposition (Seikagaku, Tokyo, Japan) within the airway wall is performed 

using color recognition, determined by the KS400 software and normalized to Pbm. To 

quantify lymphoid follicles, lung sections are immunostained with a CD3/B220 double-

staining (DAKO, Heverlee, Belgium) (BD, Erembodegem, Belgium). Dense accumulations of 

at least 50 cells are defined as lymphoid follicles and their number is normalized for the 

amount of bronchovascular bundles per lung section. 

Figure 12: Morphometrical parameters defined on a digital representation of the airway.  
AW: airway; BV: blood vessel; Pbm: perimeter basement membrane; PAt: total adventitial 
perimeter; Abm: area defined by the basement membrane; Ao: area defined by the total 

adventitial perimeter; WAt: total bronchial wall area. 
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5.5.3.9. Pulmonary resistance 

 

Airway hyperresponsiveness is a characteristic feature of asthma and implies an increased 

responsiveness of the airways to a provocative agent. In mice, airway resistance can be 

measured using direct triggering agents, e.g. carbachol 15. Carbachol is a muscarinic receptor 

agonist, which directly binds and activates the acetylcholine receptor on airway smooth 

muscle cells, hence inducing bronchoconstriction.  

 

Murine airway resistance is measured invasively in tracheostomized anaesthetized mice 

using the FlexiVent System (SCIREQ, Montreal, QC, Canada) (Figure 13). Therefore, the 

femoral artery and the jugular vein are catheterized to monitor blood pressure and drug 

administration respectively. The animals are placed on a 37°C heated blanket and are 

ventilated with an average breathing frequency of 150 breaths/min. Neuromuscular 

blockade is induced by injecting pancuronium bromide (1 mg/kg) (Inresa, Freiburg, Germany) 

intravenously. To measure airway hyperresponsiveness, mice are challenged with increasing 

doses of carbachol (0, 5, 10, 20, 40, 80, 160 and 320 μg/kg) (Sigma-Aldrich, Bornem). A 

“snapshot perturbation” maneuver is imposed to measure the (dynamic) resistance of the 

whole respiratory system (airways, lung and chest wall). For each concentration, 12 

“snapshot perturbations” are performed and the % increase in lung resistance is calculated 

relative to the baseline resistance.  For each mouse, a dose-response curve is generated and 

the area under the curve is calculated. 

 

 

 

 

 

Figure 13: Flexivent for invasive lungfunction measurement in small laboratory animals. 

74



 

75 

 Reference List 
 
 
 1.  D'hulst AI, Vermaelen KY, Brusselle GG, Joos GF, Pauwels RA. Time course of cigarette 

smoke-induced pulmonary inflammation in mice. Eur Respir J 2005; 26: 204-13. 
 2.  D'hulst AI, Maes T, Bracke KR, Demedts IK, Tournoy KG, Joos GF, Brusselle GG. 

Cigarette smoke-induced pulmonary emphysema in scid-mice. Is the acquired 
immune system required? Respir. Res. 2005; 6: 147. 

 3.  D'hulst AI, Bracke KR, Maes T, De Bleecker JL, Pauwels RA, Joos GF, Brusselle GG. Role 
of tumour necrosis factor-alpha receptor p75 in cigarette smoke-induced pulmonary 
inflammation and emphysema. Eur. Respir. J. 2006; 28: 102-12. 

 4.  Moerloose KB, Robays LJ, Maes T, Brusselle GG, Tournoy KG, Joos GF. Cigarette 
smoke exposure facilitates allergic sensitization in mice. Respir Res. 2006; 7: 49. 

 5.  Cates EC, Fattouh R, Wattie J, Inman MD, Goncharova S, Coyle AJ, Gutierrez-Ramos 
JC, Jordana M. Intranasal exposure of mice to house dust mite elicits allergic airway 
inflammation via a GM-CSF-mediated mechanism. J. Immunol. 2004; 173: 6384-92. 

 6.  Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, Coyle AJ, Gutierrez-Ramos 
JC, Ellis R, Inman MD, Jordana M. Continuous exposure to house dust mite elicits 
chronic airway inflammation and structural remodeling. Am. J. Respir. Crit Care Med. 
2004; 169: 378-85. 

 7.  Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust 
mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural 
cells. Nat. Med. 2009; 15: 410-6. 

 8.  Hellings PW, Hens G, Meyts I, Bullens D, Vanoirbeek J, Gevaert P, Jorissen M, 
Ceuppens JL, Bachert C. Aggravation of bronchial eosinophilia in mice by nasal and 
bronchial exposure to Staphylococcus aureus enterotoxin B. Clin. Exp. Allergy 2006; 
36: 1063-71. 

 9.  Bracke KR, D'hulst AI, Maes T, Demedts IK, Moerloose KB, Kuziel WA, Joos GF, 
Brusselle GG. Cigarette smoke-induced pulmonary inflammation, but not airway 
remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin. Exp. Allergy 
2007; 37: 1467-79. 

 10.  Macdonald G, Kondor N, Yousefi V, Green A, Wong F, Aquino-Parsons C. Reduction of 
carboxyhaemoglobin levels in the venous blood of cigarette smokers following the 
administration of carbogen. Radiother. Oncol. 2004; 73: 367-71. 

 11.  Yee BE, Ahmed MI, Brugge D, Farrell M, Lozada G, Idupaganthi R, Schumann R. 
Second-hand smoking and carboxyhemoglobin levels in children: a prospective 
observational study. Paediatr. Anaesth. 2010; 20: 82-9. 

 12.  Southam DS, Dolovich M, O'Byrne PM, Inman MD. Distribution of intranasal 
instillations in mice: effects of volume, time, body position, and anesthesia. Am. J. 
Physiol Lung Cell Mol. Physiol 2002; 282: L833-L839. 

 13.  Chen SC, Vassileva G, Kinsley D, Holzmann S, Manfra D, Wiekowski MT, Romani N, 
Lira SA. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the 
formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. 
J. Immunol. 2002; 168: 1001-8. 

 14.  Bracke KR, D'hulst AI, Maes T, Moerloose KB, Demedts IK, Lebecque S, Joos GF, 
Brusselle GG. Cigarette Smoke-Induced Pulmonary Inflammation and Emphysema 
Are Attenuated in CCR6-Deficient Mice. J Immunol. 2006; 177: 4350-9. 

75



 

76 

 15.  Kips JC, Anderson GP, Fredberg JJ, Herz U, Inman MD, Jordana M, Kemeny DM, 
Lotvall J, Pauwels RA, Plopper CG, Schmidt D, Sterk PJ, van Oosterhout AJ, Vargaftig 
BB, Chung KF. Murine models of asthma. Eur. Respir. J. 2003; 22: 374-82. 

 
 

76



 

 

 

77 

 

 

 

 

 

 

 

 

 

 

 
 

CHAPTER 6: PUBLICATIONS 6

77



 

 

 

78 



 

 

 

79 

 

 

 

 

 

 

 

 

 

 

 
 

6.1.  CONCOMITANT INHALATION OF CIGARETTE SMOKE AND AEROSOLIZED 

PROTEIN ACTIVATES AIRWAY DENDRITIC CELLS AND INDUCES ALLERGIC 

AIRWAY INFLAMMATION IN A TLR-INDEPENDENT WAY 
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1. Abstract 

 

Cigarette smoking is associated with the development of allergic asthma. In mice, exposure 

to cigarette smoke sensitizes the airways towards co-inhaled OVA, leading to OVA-specific 

allergic inflammation. Pulmonary dendritic cells (DCs) are professional antigen-presenting 

cells involved in immunosurveillance and implicated in the induction of allergic responses in 

lung. We investigated the effects of smoking on some of the key features of pulmonary DC 

biology, including population dynamics and cellular activation status in different lung 

compartments. We found that cigarette smoke inhalation greatly amplified DC-mediated 

transport of inhaled antigens to mediastinal lymph nodes, a finding supported by the 

upregulation of CCR7 on airway DCs. Pulmonary plasmacytoid DCs, which have been 

involved in inhalational tolerance, were reduced in number after smoke exposure. In 

addition, combined exposure to cigarette smoke and OVA-aerosol increased surface 

expression of MHC Class II, CD86 and PD-L2 on airway DCs, while ICOS-L was strongly 

downregulated. Although endotoxins present in cigarette smoke have been shown to act as 

DC activators and Th2-skewing sensitizers, TLR4-deficient and MyD88-knockout mice did not 

show impaired eosinophilic airway inflammation after concomitant exposure to smoke and 

OVA. From these data, we conclude that cigarette smoke activates the pulmonary DC 

network in a pattern that favors allergic airway sensitization towards co-inhaled inert 

protein. The TLR-independency of this phenomenon suggests that alternative immunological 

adjuvants are present in cigarette smoke. 
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2. Introduction 

 

Increasing epidemiological and experimental data now support an active role of cigarette 

smoking in the development and severity of asthma 1,2. Active smoking interacts with the 

asthmatic phenotype causing more severe allergic symptoms, a greater decline in lung 

function, and impaired therapeutic responses to corticosteroids 3,4. In addition, smoke 

exposure is considered as a risk factor for allergen sensitization and is associated with the 

onset of asthma 5-7.  

In order to better understand these effects, animal models studying the interaction between 

cigarette smoke and allergic responses have been developed 8-16. We and others recently 

established a mouse model in which concomitant inhalation of aerosolized OVA together 

with mainstream cigarette smoke -without prior immunization- induces features of allergic 

airway inflammation 16,17. This allergic response was absent after exposure to OVA alone, 

suggesting a prominent role for cigarette smoking in the establishment of a OVA-specific Th2 

immune response. Indeed, synthesis of IL-5, a Th2-derived cytokine critical for the 

recruitment and survival of eosinophils, was detected in mediastinal lymph node (MLN) cell 

suspensions of OVA/smoke-exposed animals only. However, not all studies supported a 

positive contribution of cigarette smoke exposure to the allergic phenotype and sensitization 

phenomenon, possibly as a result from the variable experimental conditions used among 

different laboratory (e.g. the use of environmental versus mainstream smoke, whole-body 

versus nose-only exposure, etc.) 11,12,14,15. One outstanding observation was that the effects 

of smoke exposure on allergic responses appear to be dose-dependent 15. 

Pulmonary dendritic cells (DCs) are specialized antigen-presenting cells and have emerged as 

central players in the immunological balance of the airways 18,19. A continuous flow of 

migrating DCs interacting with resident airway cells constantly assesses whether inhaled 

material should be confronted with an active immune response, or whether homeostatic 

tolerance should be maintained 20. The outcome of adaptive immune responses depends on 

the context in which the antigen is encountered by airway DCs and is predominantly defined 

by presence or absence of danger signals at the exposed site, such as pathogen-associated 

molecular patterns (PAMPs) betraying the presence of bacterial, fungal or viral pathogens 

and damage-associated molecular patterns (DAMPs) released by stressed or damaged host 

tissue cells 21-23. TLRs expressed on DCs are essential for the integration of these alarm 
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signals, and different pulmonary DC subsets have been shown to express different TLRs, 

potentially leading to different immunological outcomes 24. Triggering of TLRs leads to DC 

activation, manifested by the upregulation of a specific set of costimulatory molecules, 

enhanced migration towards draining LNs and efficient priming of T cells, which will 

recirculate to the periphery in an attempt to neutralize the threat. In the setting of allergic 

airway inflammation, DCs mount an inappropriate Th2-type inflammatory immune response 

against otherwise non-pathogenic inhaled material 25,26. The immunological mechanisms by 

which DCs induce this aberrant response are being unraveled. A working hypothesis is that 

environmental factors acting as DAMPs affect airway DCs in a way that breaks tolerance 

towards co-inhaled inert antigen 18,23. In this study, we asked ourselves whether cigarette 

smoke inhalation affects pulmonary DCs in a way that would facilitate allergic sensitization 

to co-inhaled ovalbumin, a model inert protein antigen. As TLR triggering by trace amounts 

of endotoxin has been shown to spark allergic sensitization to OVA 27-29, and as cigarette 

smoke has been shown to contain bioactive endotoxins 30, we verified whether TLR4 and 

MyD88-dependent TLR signaling signaling contributes to the phenomenon of smoke-induced 

allergic sensitization. 
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3. Methods 

 

Mice 

Balb/c mice (7-9 weeks old) were obtained from Harlan (The Netherlands). TLR4-deficient 

mice (C.C3-Tlr4Lps-d/J, 8-12 weeks old) and control Balb/c mice (7-9 weeks old) were 

purchased from The Jackson Laboratory (Bar Harbor, ME, USA). MyD88-knockout mice on a 

Balb/c background were obtained from the laboratory of G. Lauvau (INSERM, University of 

Sofia Antipolis, Valbonne, France), bred in our facility, and 8 week old mice were kindly 

provided by Dr Kryszko (Ear-Nose-Throat Research Laboratory, Ghent University Hospital). 

Control Balb/c mice were purchased from Harlan. The local Ethical Committee (ECD Faculty 

of Medicine and Health Sciences, Ghent, Belgium) approved all in vivo manipulations. 

 

Cigarette smoke exposure and aerosol challenge 

Groups of 8 mice were subjected to whole body mainstream cigarette smoke exposure of 5 

Kentucky Reference cigarettes (2R4F without filters, University of Kentucky, Lexington, KY, 

USA) for 7 min, 4 times/day, 5 days/week in a plexiglas chamber (17x28x14 cm) with an inlet 

for pressurized air (1.25 l/min). For the MyD88 experiment, 3R4F Kentuky cigarettes were 

used. In the experiments where cigarette smoke and aerosol exposure were performed 

simultaneously, the smoking chamber was additionally connected to an ultrasonic aerosol 

generator. Concurrent aerosol challenge with PBS or 1% OVA (Grade III, Sigma, Belgium) in 

PBS was performed for 7 min, 4 times/day, 5 days/week. The amount of contaminating LPS 

found in the grade III OVA-preparation was measured by the Limulus amebocyte lysate (LAL) 

assay and determined at 5,82 ng bioactive LPS/mg protein. 

 

Bronchoalveolar lavage and cytospins 

Twenty-four hours after the last exposure, mice were sacrificed by a lethal dose of 

pentobarbital. A tracheal cannula was inserted and bronchoalveolar lavage (BAL) was 

performed by instillation of 3 x 300 μl HBSS supplemented with BSA for cytokine analysis. 

Three additional instillations with 1 ml HBSS + EDTA were performed to achieve maximal 

recovery of BAL cells. 50000 BAL cells were processed for cytospins and were stained with 

May-Grunwald-Giemsa for differential cell counting. Remaining cells were used for FACS-

analysis. 
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Preparation of single-cell suspensions 

Lungs were perfused with saline plus EDTA through the pulmonary artery to remove 

contaminating blood cells. Lungs and mediastinal LNs (MLN) were removed and digested as 

detailed previously 31. Briefly, minced lung pieces and LNs were incubated with 1 mg/ml 

collagenase and 20 μg/ml DNAse I for 45 min at 37°. Red blood cells were lysed using 

ammonium chloride buffer. Finally, cell suspensions were filtered through a 50 μm nylon 

mesh to remove undigested organ fragments.  

 

Flow cytometry 

All staining procedures were carried out in calcium and magnesium-free PBS containing 10 

mM EDTA, 1% BSA (Dade Behring, Germany) and 0.1% sodium azide. One million cells were 

preincubated with anti-CD16/CD32 (2.4G2) to block Fc-receptors. Monoclonal antibodies 

used to identify cell surface molecules were anti-CD11c (clone HL3), anti-CD11b (clone 

M1/70), anti-MHCII (I-A/I-E, clone M5/114) and anti-CD86 (clone GL1), all from 

BDBiosciences, Erembodegem, Belgium); anti-ICOS-L (anti-CD275, clone HK5.3), anti-PDL1 

(anti-CD274, clone MIH5), anti-PDL2 (anti-CD273, clone 122), anti-OX40L (anti-CD134L, clone 

RM134L), anti-GITRL (clone YGL386) and anti-CCR7 (CD194, clone 4B12) were from 

eBioscience, San Diego, CA, USA; the PDCA-1 monoclonal antibody (clone JF05-1C2.4.1) was 

from Miltenyi Biotec (Germany). 

 

Evaluation of dendritic cell migration by intratracheal instillation of fluorescent OVA 

After 3 weeks of smoke exposure, mice were anesthetized with avertin (1 mg tribromethanol 

per ml t-amylalcohol in 2.5% in PBS). Dose of the avertin solution was carefully determined 

according to the body weight of each mouse separately so that no respiratory depression 

was observed. 70 μl of fluorescein-conjugated OVA (OVA-FITC, Invitrogen, Belgium) diluted 

in sterile PBS (5 mg/ml) was injected intratracheally using pyrogen-free catheders in order 

not to cause any local pulmonary inflammation, as described previously 31. Mice were 

further exposed to smoke until they were sacrificed at indicated time points after instillation. 

M LNs were removed and processed as described above to obtain single cell suspensions. 

The number of OVA-bearing airway-derived DCs (AW-DC) was calculated by flow-cytometry 

as the fraction of FITC-positive CD11c+ MHCIIhigh LN cells multiplied by total number of LN 

cells. PBS-instilled mice were used as a control to eliminate background fluorescence. 
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Histology 

Left lung was fixed in 4% paraformaldehyde and embedded in paraffin. Transversal sections 

of 3 μm were stained with Congo-Red (Klinipath, Belgium) for the visualization of eosinophils 

or with periodic acid-Schiff (PAS) to identify mucopolysaccharides in tissue and 

counterstained with hematoxyline (Sigma, Belgium). PAS-positive cells were identified as 

goblet cells and quantified in airway walls with a perimeter basement membrane between 

800 and 2000 μm. 

 

Measurement of OVA-specific IgE 

Blood was collected by cardiac puncture for measurement of total and OVA-specific IgE with 

a home-made ELISA as described before 17. 

 

RNA preparation and RT-PCR 

RNA from lung tissue was extracted using the Qiagen RNeasy Mini Kit (Qiagen, Valencia, CA, 

USA). Real-time RT-PCR was performed on a Lightcycler 480 Instrument (Roche Diagnostics, 

Basel, Switzerland) with Assays-on-Demand� Gene Expression Products (Applied 

Biosystems, USA) starting from 20 ng of cDNA. Monitoring of the RT-PCR occurred in real-

time using a FAM/TAMRA probe. For IL-13, a 2-step RT-PCR protocol was used. Reverse 

transcription was performed by 10 min at 25°C, 60 min at 42°C and 10 min at 70°C, using 

random hexameres and RevertAid M-MuLV Reverse transcriptase (Fermentas, Canada). 

After 10 min incubation at 95°C for denaturation of RNA-DNA heteroduplexes, a DNA-

amplification was performed with 50 cycles of 95°C for 15 sec and 60°C for 60 sec, using the 

Taqman Universal Primer Mix No AmpErase UNG (Applied Biosystems). Expression of the 

mRNA of gene of interest relative to hypoxanthine guanine phosphoribosyl transferase 

(hprt) mRNA was calculated.  

 

Statistical analysis 

Reported values are expressed as mean ± SEM. Statistical analysis was performed with SPSS 

software (version 15.0) using non-parametric tests (Kruskal-Wallis and Mann-Whitney U-

test) without Bonferroni corrections. Values of p < 0.05 were considered significant (* = p < 

0.05, ** = p < 0.01 and *** = p < 0.001). 
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4. Results 

 

4.1. Combined exposure to cigarette smoke and OVA induces allergic airway inflammation 

The effect of cigarette smoking on the development of allergic responses was illustrated by 

exposing mice to a combination of OVA-aerosol and cigarette smoke without prior 

immunization to OVA 17. As we observed earlier, 3 weeks of simultaneous exposure induced 

features of allergic airway inflammation, demonstrated by accumulation of eosinophils, 

neutrophils and lymphocytes and in the BAL-fluid (Fig. 1A), production of OVA-specific IgE in 

serum (Fig. 1A), eosinophilic infiltrates in the peribronchial tissue (Fig. 1B) and marked 

airway goblet cell hyperplasia on histological airway sections (Fig 1C), fully consistent with 

earlier observations in this model 17. In line with the goblet cell hyperplasia, we observed a 

strong induction of pulmonary IL-13 expression in mice concomitantly exposed to OVA and 

cigarette smoke compared to OVA alone (Fig 1C). IL-13 protein levels in the BAL fluid were, 

however, below the detection limit (data not shown). We also showed earlier that this 

allergic response was associated with OVA-specific Th2-cytokine production in the draining 

LNs 17. Taken together, this suggests that cigarette smoke possessed adjuvant properties 

toward concomitantly inhaled OVA that favored the development of mucosal Th2 responses.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Allergic sensitization of mice exposed to cigarette 
smoke and OVA. (A) Absolute numbers of eosinophils, 
lymphocytes and neutrophils in BAL-fluid and serum OVA-
specific IgE of mice exposed to PBS or OVA combined with 
cigarette smoke or air for 3 weeks. Cells were identified on 
cytospins stained with May-Grunwald-Giemsa Concentra-
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tion of OVA-specific IgE in serum was determined by ELISA. (B) Histological evaluation of eosinophilic 
peribronchial infiltrates on Congo Red stained lung tissue sections counterstained with hematoxylin. (C) 
Histological evaluation of goblet cell hyperplasia on periodic acid-Schiff (PAS) stained lung tissue sections. 
Quantification of the number of goblet cells per mm perimeter basement membrane (BM) of airway walls with 
a perimeter between 800 and 2000 μm of mice exposed to OVA with or without cigarette smoke. mRNA 
transcripts for IL-13 relative to a housekeeping gene (hprt) were measured in whole lung homogenates by real 
time RT-PCR. A representative experiment (n=8 mice per group) of 3 independent experiments is shown. 
*represents a significant difference (p<0.05) between the OVA/air and OVA/smoke group. 
 

4.2. Effects of cigarette smoke exposure on pulmonary DC dynamics and antigen transport 

Pulmonary DC trafficking can be divided into a recruitment phase towards the lung, 

progressing to an emigration phase towards MLNs. Combined exposure to cigarette smoke 

and OVA induced a strong elevation in DC numbers in the BAL compartment, indicating that 

the developing allergic inflammation in these mice stimulated DC recruitment to the airways 

(Fig. 2A), which is consistent with earlier observations using i.p. alum as an adjuvant 32. 

Airway-antigen specific T cell priming relies on the capture and transport of inhaled antigen 

by DCs migrating to the MLN. Hence, we investigated whether smoke inhalation as such 

could affect airway DC trafficking and antigen transport. We delivered fluorescently labeled 

OVA into the airways once after 3 weeks of smoke exposure alone. At various time points 

after intratracheal challenge, FITC+ cells were detected within CD11c+ MHCIIhigh airway-

derived DCs in the MLNs (AW-DCs), according to previous studies 31 (Fig. 2B, upper graph). 

Time course of these FITC+ AW-DCs in LNs of sham-exposed animals illustrated steady-state 

kinetics characterized by a peak of DCs infiltrating the LNs at 24h after antigen challenge, 

slowly declining thereafter (Fig. 2B, lower graph). By contrast, smoke-exposed animals 

showed a marked amplification of DC-mediated antigen transport to LNs, i.e. more antigen-

loaded DCs reaching the draining LNs (Fig. 2B, lower graph). This large wave of DCs carrying 

antigens to the LNs during smoke-exposure peaked at 24-48h after antigen challenge and 

rapidly declined thereafter. Accordingly, we found that cigarette smoke exposure selectively 

upregulated surface expression of CCR7 on airway DCs, i.e. the population primarily involved 

in airway antigen capture (Fig. 2C). No CCR7 could, however, be detected on lung 

parenchymal DCs.  

Last, different subsets of DCs have been found in the lung with conventional and 

plasmacytoid DCs (pDCs) representing the main subsets. Pulmonary pDCs were shown to 

actively contribute to tolerance towards inhaled antigen 33. Hence we evaluated how the 

numbers of pDCs were affected by cigarette smoke exposure. Remarkebly, numbers of 
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CD11cint MHCIIlow/int PDCA-1+ cells (generally regarded as pDCs) were reduced in lung and 

MLNs of smoke-exposed mice (Fig 2D).  
 

 
Figure 2: Migration of pulmonary dendritic cells during cigarette smoke exposure. (A) Numbers of DCs in the 
BAL of mice exposed to a combination of cigarette smoke and aerosolized OVA for 3 weeks. DCs were identified 
as low-autofluorescent CD11chigh cells in the cellular fraction of BAL fluid. * represents a significant difference 
(p<0.05) between the OVA/air and OVA/smoke group. (B) Kinetics of DC emigration to the draining LNs. Mice 
were exposed to mainstream cigarette smoke (smoke) or sham-exposed (air). After 3 weeks exposure, 70 μl of 
an OVA-FITC solution in sterile PBS was instilled into the airways and MLNs were isolated at various time points 
after instillation. Single cell suspensions were prepared from LNs by enzymatic digestion and labeled with CD11c 
and MHCII. FITC+ cells were exclusively found within the fraction of CD11c+ MHCIIhigh airway-derived dendritic 
cells (AW-DC). Graph depicts time course of absolute numbers of FITC+ AW-DC at various time points after 
instillation between cigarette smoke-exposed mice (smoke) and sham-exposed mice (air). (C) CCR7 expression 
on pulmonary DCs from 3 weeks cigarette smoke-exposed mice (smoke) and sham-exposed mice (air). Single cell 
suspensions derived from BAL fluid and enzymatically digested lung tissue and MLNs were stained with 
monoclonal antibodies for CD11c, MHCII and CCR7. DCs were identified as low-autofluorescent CD11chigh cells in 
BAL-fluid (BAL DC) and lung tissue (lung DC) and as CD11c+ MHCIIhigh cells in LNs (LN DC). Representative 
histogram of CCR7 expression on DCs is shown (grey shaded) relative to isotype control staining (black line). 
Cells of 3 mice (n=9 mice per group) were pooled before staining. (D) Numbers of plasmacytoid DCs (pDCs) 
characterized as CD11cint MHCIIlow/int PDCA-1+ cells in lung digests and MLNs of cigarette smoke versus air 
exposed mice (for 4 weeks). 
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4.3. Effects of inhaled cigarette smoke and/or aerosolized OVA on pulmonary dendritic cell 

activation and costimulatory molecule expression 

Costimulatory molecules expressed on DCs during antigen presentation contribute to the 

outcome of T cell stimulation and polarization. We therefore examined expression levels of 

various costimulatory molecules on the cell surface of pulmonary DCs during smoke and/or 

OVA antigen exposure. We focused on accessory molecules with documented involvement 

in the establishment of tolerance versus Th2-development. Examination of the expression 

levels of MHCII and CD86 showed that the majority of pulmonary DCs from airway 

compartment and lung tissue of OVA/smoke-exposed mice exhibited a mature or activated 

phenotype (Fig. 3). This was also observed on DCs from PBS/smoke-exposed mice in the 

airway compartment and peripheral lung tissue, consistent with our previous results 34,35.  

 

Figure 3: Costimulatory molecule profile of pulmonary dendritic cells during cigarette smoke and/or 
aerosolized OVA exposure. Mice were exposed to cigarette smoke (smoke) or sham-exposed (air) together with 
a PBS- or OVA-aerosol for 3 weeks. Single cell suspensions were prepared from BAL-fluid and enzymatically 
digested lung tissue and MLNs and stained with monoclonal antibodies. DCs were identified as low-
autofluorescent CD11chigh cells in BAL-fluid (BAL DC) and lung tissue (lung DC) and as CD11c+ MHCIIhigh cells in 
LNs (LN DC). Expression levels of various costimulatory markers (grey histograms) are shown relative to isotype 
control staining (black line). Relative mean fluorescence intensity (MFI antibody corrected for MFI isotype 
control) is indicated. Cells of 3 mice (n=9 mice per group) were pooled to obtain sufficient cells for staining. 
Representative histograms of 2 independent experiments are shown. 
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Expression of inducible costimulator ligand (ICOS-L, CD275), a member of the B7 family and a 

negative regulator of immune responses 36, was downregulated from the cell surface of 

airway and lung DCs of OVA/smoke DCs compared to other groups. Alternatively, expression 

of two other B7 family members, programmed death ligand-1 (PD-L1, CD274) and PD-L2 

(CD273), both ligands for the inhibitory T cell receptor programmed death receptor-1 (PD-1, 

CD279), was increased on DCs from OVA/smoke-exposed mice in the airway compartment 

and lung tissue. Remarkably, PD-L2 was clearly upregulated on airway-derived DCs in MLNs 

of combined OVA/smoke and PBS/smoke-exposed mice. We were not able to detect 

significant amounts of GITR-L or OX40-L (CD134L) on pulmonary DCs by flow-cytometry 

(compared to OX40-L positive control staining on splenocytes stimulated with LPS; data not 

shown).  

 
4.4. Toll-like receptor independency of cigarette smoke-induced allergic sensitization  

TLR4 has previously been reported to play a pivotal role in the allergic sensitization of 

airways towards inhaled OVA 27,28. Accordingly, we examined whether the observed allergic 

sensitization could be due to endotoxin-like effects of cigarette smoke. Therefore, we 

challenged TLR4-deficient mice with cigarette smoke and OVA simultaneously for 3 weeks 

and measured the degree of eosinophilic inflammation. Remarkably, TLR4-deficient mice 

were clearly able to develop a Th2-response comparable to the levels observed in Balb/c 

control mice, as measured by BAL eosinophilia, BAL lymphocytes, BAL DCs and serum OVA-

specific IgE (Fig. 4A). In addition, histological evaluation of lung tissue showed peribronchial 

eosinophilic infiltrates in both TLR4-deficient and control mice exposed to cigarette smoke 

and OVA simultaneously (Fig. 4B).  

To exclude the contribution of alternative TLRs in cigarette-smoke induced allergic airway 

sensitization, we repeated the experiment in Myd88-gene deficient animals. MyD88 is an 

essential adaptor molecule broadly shared among members of the TLR/IL-1R family. 

OVA/smoke-exposed Myd88-knockout mice did not show any significant reduction in 

eosinophilic airway inflammation, lymphocytic BAL infiltration and airway DC recruitment 

(Fig. 4C). In contrast, and consistent with earlier observations in murine models of cigarette 

smoke-induced lung inflammation 37, neutrophil and macrophage recruitment into the 

airways in response to OVA/smoke inhalation was clearly impaired in the absence of MyD88. 
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Figure 4: Allergic sensitization of TLR4-deficient mice exposed to cigarette smoke and OVA. (A) Absolute 
numbers of eosinophils, lymphocytes and DCs in the bronchoalveolar lavage (BAL) fluid and concentration of 
OVA-specific IgE in serum of control mice (Balb/c) or TLR4-deficient mice (TLR4d) exposed to PBS or OVA 
combined with cigarette smoke or air for 3 weeks. Eosinophils and lymphocytes are identified on cytospins 
stained with May-Grunwald-Giemsa, while DCs are identified by flow-cytometry as CD11chigh low-
autofluorescent cells. n = 9 mice per group. (B) Histological evaluation of eosinophilic peribronchial infiltrates on 
Congo Red stained lung tissue sections counterstained with hematoxylin of Balb/c mice and TLR4-deficient mice. 
(C) Numbers of eosinophils, lymphocytes, neutrophils, DCs and macrophages in the BAL-fluid of MyD88-
knockout or Balb/c control mice after 3 weeks of OVA-aerosol with (black bars) or without (grey bars) cigarette 
smoke simultaneously. Eosinophils, lymphocytes and neutrophils were identified on cytospins, whereas DCs 
(CD11chigh low-autofluorescent cells), CD11b+ DCs (CD11b+ CD11chigh low-autofluorescent cells) and 
macrophages (CD11chigh high-autofluorescent cells) were differentiated using FACS analysis. OVA-specific IgE is 
determined using ELISA. n = 7 mice per group. * represents a significant difference (p<0.05) between the 
OVA/air and OVA/smoke group, unless otherwise indicated. 
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5. Discussion 

 

Concomitant inhalation of aerosolized OVA and cigarette smoke in mice induces a Th2-type 

airway inflammation that is absent after exposure to either agent alone. This aberrant 

immune response has high clinical relevance, as illustrated by the interaction between 

smoking habits and the development of asthma in predisposed subjects. The present study 

was designed to investigate the triggering of allergic airway inflammation by cigarette smoke 

from a pulmonary DC point of view. Key features of pulmonary DC biology are (i) recruitment 

to the antigen exposed lung, (ii) sampling of inhaled antigen and transport towards draining 

MLNs, (iii) maturation (i.e. increase in costimulatory molecule expression), which is 

necessary to generate antigen-specific effector T cells. Subsequently, we sought to gain 

mechanistic insight in the observed phenomenon: based on previous knowledge, we focused 

on potential endotoxin-like activity in cigarette smoke. 

We first confirmed that combined smoke and OVA protein aerosol exposure induces a strong 

increase in DC numbers in the airway compartment, which is consistent with observations 

made previously in OVA/alum-sensitized, OVA-aerosol challenged mice 32,38. Transport of 

antigens from the airways to the T cell areas of draining LNs represents an additional key 

step in the antigen-presenting function of airway DCs. Here, we reveal that there is strongly 

amplified DC-mediated transport of inhaled protein antigen towards MLN in the presence of 

co-inhaled cigarette smoke. In accordance with this observation, we detected an 

upregulation of the LN-homing chemokine receptor CCR7 on airway DCs. Migration of DCs to 

the LNs is enabled by CCR7 expression on the cell surface of DCs interacting with the 

chemokines CCL21 and CCL19 displayed on lung lymphatics and in T cell zones of LNs. An 

alternative explanation for the enhanced capture and transport of airway antigen by DCs 

could be the recently described alteration of airway epithelial tight junctions by mainstream 

cigarette smoke 39. The resulting increase in epithelial permeability could lead to enhanced 

penetration of airborne antigen and promote the activation of the subepithelial DC network 
40. In addition to changes in DC trafficking to the LNs, perturbation of the epithelial 

homeostasis could also affect DCs in a way that can trigger Th2-oriented sensitization. GM-

CSF for instance, a product of the airway epithelium which is increased in smoke-exposed 

airways 13,17,41, has been shown to induce allergic sensitization to inhaled OVA by means of 

airway DC activation, in the absence of any other adjuvant 42. Furthermore, allergic 
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sensitization by cigarette smoking was recently found to be, at least partially, GM-CSF 

dependent 16. Thymic stromal lymphopoietin (TSLP) is another candidate cytokine which can 

be secreted by the respiratory epithelium and is both a powerful activator of DCs leading to 

a Th2-polarized immune response in an OX40-OX40L-dependent manner 43. Interestingly, 

intanasal administration of cigarette smoke-extract induced TSLP expression in the mouse 

lung and blocking TSLP activity inhibited OVA-specific Th2 responses and airway 

inflammation after concomittant cigarette smoke-extract and OVA exposure 44. However, in 

our experiments, we could not detect significant modulation of GM-CSF or TSLP expression 

after either smoke or concomitant OVA/smoke inhalation, nor did we observe upregulation 

of OX40L on pulmonary DC populations (data not shown).  

The pattern of accessory or costimulatory molecule expression on the antigen-transporting 

DCs is a known determinant in the outcome of immune responses. Our data show that DCs 

in the airway compartment of OVA/smoke-exposed lungs display an increased expression of 

accessory molecules previously known for their role in modulating allergic immune 

responses. In line with our earlier observations 34,35, cigarette smoke inhalation induces 

upregulation of CD86 (B7-2) on airway DCs. This costimulatory molecule has been clearly 

shown to be involved in the priming of Th2 responses and the subsequent development of 

allergic airway inflammation towards inhaled protein 32,45, and could thus be a means 

through which cigarette smoke exerts it’s Th2-skewing properties in this model. The striking 

downregulation of ICOS-L on airway DCs of mice concomitantly exposed to cigarette smoke 

and OVA is also consistent with our previous observations in the OVA-alum-i.p./OVA-aerosol 

asthma model 32. Expression of ICOS-L on DCs during initial priming of T cells drives the 

formation of regulatory T cells in lung draining LNs and has been involved in the 

establishment of respiratory tolerance 36. Withdrawal of this inhibitory signal might 

contribute to the preferential Th2 priming towards inhaled antigens. An intriguing 

observation is the upregulation of PD-L2, another member of the B7 family, on airway-

derived DCs in the draining MLNs of mice with OVA/smoke-induced eosinophilic airway 

inflammation. This is reminiscent of the previously described increase in PD-L2 on airway 

DCs of OVA-alum-sensitized/OVA-aerosol-challenged allergic mice 46, and might thus be a 

characteristic feature of allergic immune responses. PD-L2 costimulation during allergen 

priming and challenge was shown to exacerbate immune and inflammatory allergic 

responses in mice, supporting a Th2-potentiating function 47. It has also been proposed that 
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Th2 cells specifically regulate PD-L2 expression on DCs via reverse signaling 48,49. The novel 

finding in our study, however, is a striking upregulation of PD-L2 on airway-derived LN DCs 

after cigarette smoke inhalation alone. Whether this creates a context prone to Th2-

polarized sensitization towards co-inhaled protein is a tempting hypothesis. Further 

investigations using e.g. blocking antibodies or local delivery of siRNA may help to elucidate 

the role of DC-expressed PD-L2 in cigarette smoke-induced allergic airway inflammation. 

Interestingly, cigarette smoke exposure resulted in a reduction of pDC numbers in the lungs 

and thoracic lymph nodes. pDCs have been recently described for their capacity to maintain 

inhalational tolerance: selective depletion of pulmonary pDCs was able to spark Th2-

polarized airway inflammation towards inhaled inert antigen, in the absence of any adjuvant 
33. Together with the activation of conventional airway DCs and the increase in DC-mediated 

transport of inhaled antigen towards lymph nodes, the reduced number of pDCs in smoke-

exposed lungs might thus establish a general climate of reduced inhalational tolerance. 

In contrast to our current findings, a recent study by Robbins et al. reported that cigarette 

smoke leads to a decrease in lung DC numbers, a decrease in DC activation markers and no 

change in migration towards MLNs 50. These findings are likely attributable to fundamental 

methodological differences. The most important element (not obvious in the 

abovementioned study) is the exposure system used, i.e. nose-only vs. whole-body, as this 

leads to large differences in dose intensity as reflected by carboxyhemoglobin (HbCO) levels. 

The protocol we used involves more frequent exposures and results in HbCO levels 

comparable to those measured in human smokers 51,52. In addition, we report surface 

expression of costimulatory molecules on DCs as shifts in mean fluorescence intensity (MFI), 

which is more accurate than % positive cells for these types of markers. Finally, in our study 

we aim to discriminate effects on lung parenchymal DCs obtained by enzymatic digestion 

versus airway DCs harvested by BAL. This allows us to detect the confinement of smoke 

effects (e.g. the upregulation of accessory molecules and CCR7) to the DCs in the airway 

compartment. 

We sought to gain mechanistic insight in the Th2-skewing adjuvant properties of cigarette 

smoke co-inhaled with inert protein. We hypothesized that this effect would rely on the 

presence of endotoxin-like activity within the smoke itself. Indeed, whereas endotoxin-free 

OVA induces inhalational tolerance, co-inhalation of OVA and low-dose endotoxin has been 

shown to trigger OVA-specific allergic airway inflammation 27. This phenomenon, along with 
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the activation and enhanced migration of airway DCs, appeared TLR4-dependent 28. TLR4 

also appears to be a determining factor in the initiation of allergic responses against inhaled 

house dust mite allergen 53,54. Furthermore, our group and others previously showed that 

acute cigarette smoke exposure induces airway DC maturation in a TLR4-dependent fashion 
34,37. Finally, both mainstream and sidestream cigarette smoke are known to contain 

bioactive endotoxin 30. Therefore, we were surprised to observe unhampered development 

of allergic airway inflammation in TLR4-deficient mice exposed to cigarette smoke and OVA. 

Any endotoxin potentially contaminating the cigarette smoke and/or the OVA used in these 

studies would have its pro-allergic effects greatly diminished in the absence of functional 

TLR4. cigarette smoke exposure could also activate alternative TLRs, such as TLR2 which can 

bind heat shock protein-70, an endogenous danger signal known to be released in smoke-

exposed airways 37. However, smoke-induced allergic sensitization was unhampered in 

Myd88-gene deficient animals, thereby ruling out the contribution of TLR2 and several other 

members of the TLR/IL-1R family of innate immune sensors. This is in contrast to airway 

neutrophilia that disappeared completely in our model (consistent with 37) and the Myd88-

dependency of allergic responses observed after house dust mite challenge, intranasal 

challenge of OVA with low-dose LPS or in the presence of bacterial infection 29,55,56.  

The fact that in our experiments the development of allergic inflammation is unaffected by 

TLR4/MyD88-deficiency suggests immunological adjuvant mechanisms of a different kind. 

The cellular stress inflicted by cigarette smoke in the airways, for instance, could lead to the 

release of compounds that trigger TLR/MyD88-independent immunogenic pathways. One of 

these endogenous compounds could be ATP, which was recently reported to trigger 

purinergic receptors on the airway DC network, leading to a DC-dependent allergic 

sensitization towards inhaled inert protein 57. Furthermore, alum, a prototypical Th2-

skewing adjuvant, was shown to exert its adjuvant effect in a TLR4-independent way and 

activate the NLRP3 inflammasome pathway either directly, or through the release of uric 

acid from the local tissue micro-environment 58,59. It is worth noting that aluminum has been 

detected at high concentrations in cigarette smoke, potentially precipitating as alum-like 

hydroxy-salts in the epithelial lining fluid overlying the airway DC network 60. In support of 

this, MyD88-signaling is not always necessary for alum to act as an adjuvant for humoral 

adaptive responses 61. Hence, cytotoxic compounds in cigarette smoke could act in a 

TLR/MyD88-independent manner by activating airway DCs either directly or by means of 
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endogenous danger signals released by stressed airway cells (reviewed in 62). Whether this 

could result in a deviation of immune homeostasis towards an aberrant Th2-driven 

inflammation, is a compelling working hypothesis for further investigation. 

 

6. Acknowledgements 

 

The authors thank E. Castrique, C. Snauwaert, G. Barbier, K. De Saedeleer, I. De Borle, A. 

Neesen, M. Mouton, E. Spruyt and P. Degryze for their excellent technical support. We also 

thank Dr Krysko for providing the MyD88-knockout mice. 

 

96



 

 

 

97 

Reference List 
 
 
 1.  Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur. Respir. J. 

2004; 24: 822-33. 
 2.  Gilmour MI, Jaakkola MS, London SJ, Nel AE, Rogers CA. How exposure to 

environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens 
influences the incidence of asthma. Environ. Health Perspect. 2006; 114: 627-33. 

 3.  Thomson NC, Spears M. The influence of smoking on the treatment response in 
patients with asthma. Curr. Opin. Allergy Clin. Immunol. 2005; 5: 57-63. 

 4.  Lazarus SC, Chinchilli VM, Rollings NJ, Boushey HA, Cherniack R, Craig TJ, Deykin A, 
DiMango E, Fish JE, Ford JG, Israel E, Kiley J, Kraft M, Lemanske RF, Jr., Leone FT, 
Martin RJ, Pesola GR, Peters SP, Sorkness CA, Szefler SJ, Wechsler ME, Fahy JV. 
Smoking affects response to inhaled corticosteroids or leukotriene receptor 
antagonists in asthma. Am. J. Respir. Crit Care Med. 2007; 175: 783-90. 

 5.  Kumar R. Prenatal factors and the development of asthma. Curr. Opin. Pediatr. 2008; 
20: 682-7. 

 6.  Gilliland FD, Islam T, Berhane K, Gauderman WJ, McConnell R, Avol E, Peters JM. 
Regular Smoking and Asthma Incidence in Adolescents. Am. J Respir Crit Care Med. 
2006; 174: 1094-100. 

 7.  Piipari R, Jaakkola JJ, Jaakkola N, Jaakkola MS. Smoking and asthma in adults. Eur. 
Respir. J. 2004; 24: 734-9. 

 8.  Seymour BW, Pinkerton KE, Friebertshauser KE, Coffman RL, Gershwin LJ. Second-
hand smoke is an adjuvant for T helper-2 responses in a murine model of allergy. J. 
Immunol. 1997; 159: 6169-75. 

 9.  Moerloose KB, Pauwels RA, Joos GF. Short-term cigarette smoke exposure enhances 
allergic airway inflammation in mice. Am. J. Respir. Crit Care Med. 2005; 172: 168-72. 

 10.  Robbins CS, Pouladi MA, Fattouh R, Dawe DE, Vujicic N, Richards CD, Jordana M, 
Inman MD, Stampfli MR. Mainstream cigarette smoke exposure attenuates airway 
immune inflammatory responses to surrogate and common environmental allergens 
in mice, despite evidence of increased systemic sensitization. J Immunol. 2005; 175: 
2834-42. 

 11.  Melgert BN, Postma DS, Geerlings M, Luinge MA, Klok PA, Van Der Strate BW, 
Kerstjens HA, Timens W, Hylkema MN. Short-term smoke exposure attenuates 
ovalbumin-induced airway inflammation in allergic mice. Am. J. Respir. Cell Mol. Biol. 
2004; 30: 880-5. 

 12.  Melgert BN, Timens W, Kerstjens HA, Geerlings M, Luinge MA, Schouten JP, Postma 
DS, Hylkema MN. Effects of 4 months of smoking in mice with ovalbumin-induced 
airway inflammation. Clin. Exp. Allergy 2007; 37: 1798-808. 

 13.  Rumold R, Jyrala M, Diaz-Sanchez D. Secondhand smoke induces allergic sensitization 
in mice. J. Immunol. 2001; 167: 4765-70. 

 14.  Bowles K, Horohov D, Paulsen D, Leblanc C, Littlefield-Chabaud M, Ahlert T, Ahlert K, 
Pourciau S, Penn A. Exposure of adult mice to environmental tobacco smoke fails to 
enhance the immune response to inhaled antigen. Inhal. Toxicol. 2005; 17: 43-51. 

 15.  Thatcher TH, Benson RP, Phipps RP, Sime PJ. High-dose but not low-dose mainstream 
cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function. 
Am. J. Physiol Lung Cell Mol. Physiol 2008; 295: L412-L421. 

97



 

 

 

98 

 16.  Trimble NJ, Botelho FM, Bauer CM, Fattouh R, Stampfli MR. Adjuvant and anti-
inflammatory properties of cigarette smoke in murine allergic airway inflammation. 
Am. J. Respir. Cell Mol. Biol. 2009; 40: 38-46. 

 17.  Moerloose KB, Robays LJ, Maes T, Brusselle GG, Tournoy KG, Joos GF. Cigarette 
smoke exposure facilitates allergic sensitization in mice. Respir Res. 2006; 7: 49. 

 18.  Hammad H, Lambrecht BN. Dendritic cells and epithelial cells: linking innate and 
adaptive immunity in asthma. Nat. Rev. Immunol. 2008; 8: 193-204. 

 19.  Holt PG, Strickland DH, Wikstrom ME, Jahnsen FL. Regulation of immunological 
homeostasis in the respiratory tract. Nat. Rev. Immunol. 2008; 8: 142-52. 

 20.  Vermaelen K, Pauwels R. Pulmonary dendritic cells. Am. J Respir Crit Care Med. 2005; 
172: 530-51. 

 21.  Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. 
Nat. Immunol. 2004; 5: 987-95. 

 22.  Shimizu K, Fujii S. An adjuvant role of in situ dendritic cells (DCs) in linking innate and 
adaptive immunity. Front Biosci. 2008; 13: 6193-201. 

 23.  Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr. Opin. 
Immunol. 2001; 13: 114-9. 

 24.  Demedts IK, Bracke KR, Maes T, Joos GF, Brusselle GG. Different roles for human lung 
dendritic cell subsets in pulmonary immune defense mechanisms. Am. J. Respir. Cell 
Mol. Biol. 2006; 35: 387-93. 

 25.  Holt PG, Upham JW. The role of dendritic cells in asthma. Curr. Opin. Allergy Clin. 
Immunol. 2004; 4: 39-44. 

 26.  Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the 
pathogenesis of asthma. Nat. Rev. Immunol. 2003; 3: 994-1003. 

 27.  Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. 
Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 
responses to inhaled antigen. J. Exp. Med. 2002; 196: 1645-51. 

 28.  Dabbagh K, Dahl ME, Stepick-Biek P, Lewis DB. Toll-like receptor 4 is required for 
optimal development of Th2 immune responses: role of dendritic cells. J. Immunol. 
2002; 168: 4524-30. 

 29.  Piggott DA, Eisenbarth SC, Xu L, Constant SL, Huleatt JW, Herrick CA, Bottomly K. 
MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J. Clin. 
Invest 2005; 115: 459-67. 

 30.  Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W. Bacterial endotoxin is an active 
component of cigarette smoke. Chest 1999; 115: 829-35. 

 31.  Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA. Specific migratory 
dendritic cells rapidly transport antigen from the airways to the thoracic lymph 
nodes. J. Exp. Med. 2001; 193: 51-60. 

 32.  Vermaelen K, Pauwels R. Accelerated airway dendritic cell maturation, trafficking, 
and elimination in a mouse model of asthma. Am. J. Respir. Cell Mol. Biol. 2003; 29: 
405-9. 

 33.  de Heer HJ, Hammad H, Soullie T, Hijdra D, Vos N, Willart MA, Hoogsteden HC, 
Lambrecht BN. Essential role of lung plasmacytoid dendritic cells in preventing 
asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 2004; 200: 89-98. 

 34.  Maes T, Bracke KR, Vermaelen KY, Demedts IK, Joos GF, Pauwels RA, Brusselle GG. 
Murine TLR4 is implicated in cigarette smoke-induced pulmonary inflammation. Int. 
Arch. Allergy Immunol. 2006; 141: 354-68. 

98



 

 

 

99 

 35.  D'hulst AI, Vermaelen KY, Brusselle GG, Joos GF, Pauwels RA. Time course of cigarette 
smoke-induced pulmonary inflammation in mice. Eur Respir J 2005; 26: 204-13. 

 36.  Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT, Sharpe AH, Berry G, 
DeKruyff RH, Umetsu DT. Antigen-specific regulatory T cells develop via the ICOS-
ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 
2002; 8: 1024-32. 

 37.  Doz E, Noulin N, Boichot E, Guenon I, Fick L, Le Bert M, Lagente V, Ryffel B, Schnyder 
B, Quesniaux VF, Couillin I. Cigarette smoke-induced pulmonary inflammation is 
TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J. Immunol. 2008; 180: 1169-
78. 

 38.  van Rijt LS, Prins JB, Leenen PJ, Thielemans K, de Vries VC, Hoogsteden HC, Lambrecht 
BN. Allergen-induced accumulation of airway dendritic cells is supported by an 
increase in CD31(hi)Ly-6C(neg) bone marrow precursors in a mouse model of asthma. 
Blood 2002; 100: 3663-71. 

 39.  Olivera DS, Boggs SE, Beenhouwer C, Aden J, Knall C. Cellular mechanisms of 
mainstream cigarette smoke-induced lung epithelial tight junction permeability 
changes in vitro. Inhal. Toxicol. 2007; 19: 13-22. 

 40.  Gangl K, Reininger R, Bernhard D, Campana R, Pree I, Reisinger J, Kneidinger M, Kundi 
M, Dolznig H, Thurnher D, Valent P, Chen KW, Vrtala S, Spitzauer S, Valenta R, 
Niederberger V. Cigarette smoke facilitates allergen penetration across respiratory 
epithelium. Allergy 2009; 64: 398-405. 

 41.  Vlahos R, Bozinovski S, Jones JE, Powell J, Gras J, Lilja A, Hansen MJ, Gualano RC, 
Irving L, Anderson GP. Differential protease, innate immunity, and NF-kappaB 
induction profiles during lung inflammation induced by subchronic cigarette smoke 
exposure in mice. Am. J. Physiol Lung Cell Mol. Physiol 2006; 290: L931-L945. 

 42.  Stampfli MR, Wiley RE, Neigh GS, Gajewska BU, Lei XF, Snider DP, Xing Z, Jordana M. 
GM-CSF transgene expression in the airway allows aerosolized ovalbumin to induce 
allergic sensitization in mice. J. Clin. Invest 1998; 102: 1704-14. 

 43.  Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt RW, Omori M, Zhou B, 
Ziegler SF. TSLP: an epithelial cell cytokine that regulates T cell differentiation by 
conditioning dendritic cell maturation. Annu. Rev. Immunol. 2007; 25: 193-219. 

 44.  Nakamura Y, Miyata M, Ohba T, Ando T, Hatsushika K, Suenaga F, Shimokawa N, 
Ohnuma Y, Katoh R, Ogawa H, Nakao A. Cigarette smoke extract induces thymic 
stromal lymphopoietin expression, leading to T(H)2-type immune responses and 
airway inflammation. J. Allergy Clin. Immunol. 2008; 122: 1208-14. 

 45.  van Rijt LS, Vos N, Willart M, Kleinjan A, Coyle AJ, Hoogsteden HC, Lambrecht BN. 
Essential role of dendritic cell CD80/CD86 costimulation in the induction, but not 
reactivation, of TH2 effector responses in a mouse model of asthma. J. Allergy Clin. 
Immunol. 2004; 114: 166-73. 

 46.  van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M, Duez C, Hoogsteden HC, Lambrecht 
BN. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge 
abrogates the characteristic features of asthma. J. Exp. Med. 2005; 201: 981-91. 

 47.  Oflazoglu E, Swart DA, Anders-Bartholo P, Jessup HK, Norment AM, Lawrence WA, 
Brasel K, Tocker JE, Horan T, Welcher AA, Fitzpatrick DR. Paradoxical role of 
programmed death-1 ligand 2 in Th2 immune responses in vitro and in a mouse 
asthma model in vivo. Eur. J. Immunol. 2004; 34: 3326-36. 

99



 

 

 

100 

 48.  Loke P, Allison JP. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. 
Proc. Natl. Acad. Sci. U. S. A 2003; 100: 5336-41. 

 49.  Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll 
DM, Okumura K, Azuma M, Yagita H. Expression of programmed death 1 ligands by 
murine T cells and APC. J. Immunol. 2002; 169: 5538-45. 

 50.  Robbins CS, Franco F, Mouded M, Cernadas M, Shapiro SD. Cigarette smoke exposure 
impairs dendritic cell maturation and T cell proliferation in thoracic lymph nodes of 
mice. J. Immunol. 2008; 180: 6623-8. 

 51.  Bracke KR, D'hulst AI, Maes T, Demedts IK, Moerloose KB, Kuziel WA, Joos GF, 
Brusselle GG. Cigarette smoke-induced pulmonary inflammation, but not airway 
remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin. Exp. Allergy 
2007; 37: 1467-79. 

 52.  Macdonald G, Kondor N, Yousefi V, Green A, Wong F, Aquino-Parsons C. Reduction of 
carboxyhaemoglobin levels in the venous blood of cigarette smokers following the 
administration of carbogen. Radiother. Oncol. 2004; 73: 367-71. 

 53.  Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust 
mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural 
cells. Nat. Med. 2009; 15: 410-6. 

 54.  Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, Thorne PS, 
Wills-Karp M, Gioannini TL, Weiss JP, Karp CL. Allergenicity resulting from functional 
mimicry of a Toll-like receptor complex protein. Nature 2009; 457: 585-8. 

 55.  Phipps S, Lam CE, Kaiko GE, Foo SY, Collison A, Mattes J, Barry J, Davidson S, Oreo K, 
Smith L, Mansell A, Matthaei KI, Foster PS. Toll/IL-1 signaling is critical for house dust 
mite-specific helper T cell type 2 and type 17 responses. Am. J. Respir. Crit Care Med. 
2009; 179: 883-93. 

 56.  Schroder NW, Crother TR, Naiki Y, Chen S, Wong MH, Yilmaz A, Slepenkin A, Schulte 
D, Alsabeh R, Doherty TM, Peterson E, Nel AE, Arditi M. Innate immune responses 
during respiratory tract infection with a bacterial pathogen induce allergic airway 
sensitization. J. Allergy Clin. Immunol. 2008; 122: 595-602. 

 57.  Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden 
HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC, Jr., Lambrecht BN. Extracellular 
ATP triggers and maintains asthmatic airway inflammation by activating dendritic 
cells. Nat. Med. 2007; 13: 913-9. 

 58.  Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS, Flavell RA. Crucial role for the 
Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. 
Nature 2008; 453: 1122-6. 

 59.  Kool M, Soullie T, van Nimwegen M, Willart MA, Muskens F, Jung S, Hoogsteden HC, 
Hammad H, Lambrecht BN. Alum adjuvant boosts adaptive immunity by inducing uric 
acid and activating inflammatory dendritic cells. J. Exp. Med. 2008; 205: 869-82. 

 60.  Exley C, Begum A, Woolley MP, Bloor RN. Aluminum in tobacco and cannabis and 
smoking-related disease. Am. J. Med. 2006; 119: 276-11. 

 61.  Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, Nemazee D. Adjuvant-
enhanced antibody responses in the absence of toll-like receptor signaling. Science 
2006; 314: 1936-8. 

 62.  Robays LJ, Maes T, Joos GF, Vermaelen KY. Between a cough and a wheeze: dendritic 
cells at the nexus of tobacco smoke-induced allergic airway sensitization. Mucosal. 
Immunol. 2009; 2: 206-19. 

100



                                                                                                                             

 

 

101 

 

 

 

 

 

 

 

 

 

 

 
 

6.2. SHORT CIGARETTE SMOKE EXPOSURE FACILITATES SENSITIZATION AND 

ASTHMA DEVELOPMENT IN MICE 

 

Ellen A. Lanckacker, Kurt G. Tournoy, MD, PhD, Hamida Hammad, PhD, Gabriele Holtappels, 

Bart N. Lambrecht, MD, PhD, Guy F. Joos, MD, PhD, Tania Maes, PhD 

 

European Respiratory Journal. 2012 Aug 16. [Epub ahead of print] 

6.2 

101



                                                                                                                             

 

 

102 

1. Abstract 

 

Objective: Epidemiological studies indicate that cigarette smoke (CS) exposure is a risk factor 

for increased sensitization and asthma development. The aim of the study was to examine 

the impact of CS on sensitization and allergic airway inflammation, in response to a low dose 

of house dust mite (HDM), and to obtain potential mechanistic insights. 

Methods: Mice were exposed to low doses of HDM extract combined with air or CS 

exposure, either during allergen sensitization or during development of allergic airway 

disease.  

Results: Mice concomitantly exposed to low dose HDM, combined with CS for 3 weeks, 

demonstrated an asthmatic phenotype with significantly increased airway eosinophilia, 

goblet cell metaplasia, airway hyperresponsiveness and a rise in HDM-specific serum IgG1, 

compared to sole HDM or CS exposure. In addition, short CS inhalation, during the initial 

contact with HDM allergens, was sufficient to facilitate sensitization and development of a 

complete asthmatic phenotype after rechallenge with HDM. Mechanistically, short CS 

exposure amplified DC-mediated transport of FITC-labelled HDM allergens to the 

intrathoracic lymph nodes and generated a local Th2 response. 

Conclusion: Short CS exposure is sufficient to facilitate allergic sensitization and the 

development of low dose HDM-induced allergic asthma, possibly through affecting dendritic 

cell function. 
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2. Introduction 

 

Most asthma begins in early childhood after sensitization and re-exposure to ubiquitous 

environmental allergens, like house dust mites (HDM), moulds, plant pollen or animal 

dander. The risk for sensitization is strongly dependent on the level of allergen exposure 1.  

Over the last decades, the incidence of asthma has increased worldwide, especially in 

industrialized countries. This strong rise in asthma prevalence emphasizes an important role 

for environmental and socio-economic conditions 2.  

One of the main environmental risk factors, associated with asthma is the exposure to 

cigarette smoke (CS) 3. Epidemiological studies have shown that smoking is responsible for 

higher asthma severity scores 4,5, diminished lung function 5,6 and poorer asthma control 7,8. 

Smoking is even associated with increased sensitization to HDM allergens 9, and appears to 

be a risk factor for new onset asthma among children and adults 10-13. The mechanisms 

mediating the adverse effects of smoking on asthma pathogenesis remain to be elucidated. 

Most murine models, designed to characterize the complex interaction between smoking 

and allergic airway inflammation, used to rely on the sensitization to the “surrogate” 

allergen ovalbumin (OVA) 14-19. As OVA is an intrinsically inert protein, the role of CS might 

have been overestimated in the past. Moreover, the differences in biochemical character 

between OVA and real-life allergens remain an undeniable limitation of the previously used 

OVA models. 

 

To explain the observed increase in asthma prevalence due to CS exposure, we hypothesized 

that CS may lower the threshold for sensitization to HDM allergens. We developed a 

clinically relevant murine model of allergic asthma, using low doses of HDM as real-life 

aeroallergen, combined with CS. We examined the effect of CS on both sensitization and 

ensuing asthma development and checked whether a few days of smoke exposure are 

sufficient to prime local sensitization in the lymph nodes.  Finally, we looked for potential 

mechanistic insights. 
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3. Methods 

 

Mice 

Male Balb/c mice (6-8 weeks old) were purchased from Harlan (Zeist, the Netherlands). All in 

vivo manipulations were approved by the Animal Ethical Committee of the Faculty of 

Medicine and Health Sciences of Ghent University.   

Cigarette smoke (CS) exposure and house dust mite (HDM) administration 

Mice (n = 10 per group) were subjected to whole body CS (3R4F Kentucky Reference 

cigarettes) as described before 20. Control mice were exposed to air. 30 minutes after the 

last smoke exposure, 25 μg HDM extract (Dermatophagoides pteronyssinus) (Greer 

Laboratories, Lenoir, NC, USA) (25,27 μg Der p1/mg protein; 8.43 endotoxin U/mg) or PBS 

was administered intranasally in isoflurane anesthetized mice on days 0, 7 and 14 and mice 

were analysed on day 17. To evaluate the impact of CS on the development of HDM-induced 

allergic asthma, we performed Protocol 1 (Figure 1). To unravel the impact of CS during the 

sensitization phase, mice were subjected to HDM and CS according to Protocol 2 or 4 (Figure 

1). The impact of CS during the challenge phase was evaluated using Protocol 3 (Figure 1).  

Bronchoalveolar lavage (BAL) and cytospins 

24 hours after the last smoke exposure and 72 hours after the last HDM application, mice 

were euthanized with an overdose of pentobarbital (Sanofi-Ceva, Paris, France). BAL, 

cytospins and cell differentiation were performed as described previously 20.  Remaining cells 

were used for FACS-analysis. 

Lung and mediastinal lymph node (mLN) single-cell suspensions 

Lungs were perfused with saline plus EDTA through the pulmonary artery to remove 

contaminating blood cells. Lungs and mLN were removed and digested as described before 
21.  

Flow cytometry 

Staining procedures, data acquisition and analysis were performed as described previously 
20. Monoclonal antibodies (mAbs) used to identify mouse DC populations were anti-CD11c 

(clone HL3), anti-MHC class II (I-A/I-E, clone M5/114.15.2) and anti-CD11b (clone M1/70). 

CD11b+ DCs were defined as CD11c-bright, low autofluorescent cells which strongly express 
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MHC class II and CD11b on their surface. The following mAbs were used to stain mouse T-cell 

subpopulations: anti-CD3 (clone 145-2C11), anti-CD4 (clone GK1.5), anti-CD8 (clone 53-6.7) 

and anti-CD69 (clone H1.2F3) (all mAbs from BD Pharmingen, San Diego, CA, USA). 

MLN cell culture 

Paratracheal and parathymic intrathoracic LNs were collected into sterile tubes containing 

cold (4°C) tissue culture medium (TCM) and digested (see above) to obtain a single cell 

suspension.  TCM was prepared using RPMI 1640 supplemented with 10% fetal bovine 

serum, L-glutamine, penicillin/streptomycin and β-mercaptoethanol (all from Gibco BRL; 

Invitrogen Corp). Cells were then transferred in triplicate to round-bottom, 96-well plates 

(Becton Dickinson (BD), BD, CA, USA) with or without 15 μg HDM extract/ml culture medium, 

at a density of 2 x 105 cells per well and incubated in a humidified 37°C incubator with 5% 

CO2.  After 5 days, supernatants were harvested and frozen for cytokine measurements. 

Histology 

The left lung was fixed in 4% paraformaldehyde and embedded in paraffin. Transversal 

sections of 3 μm were stained with Congo Red (Klinipath, Olen, Belgium) to highlight 

eosinophils, with periodic acid-Schiff (PAS) to identify goblet cells or immunostained for α-

smooth muscle actin to evaluate airway smooth muscle content. Quantitative 

measurements were performed using a Zeiss KS400 Image Analyzer platform (Oberkochen, 

Germany) as described earlier 22. To identify mast cells, lungs were stained with toluidin 

blue. The number of mast cells was counted per field (whole left lung lobe).  Only those 

located in the airway wall were included for analysis. 

Protein measurements 

Total IgE was measured using coated microtiter plates and biotinylated polyclonal rabbit 

anti-mouse IgE (S. Florquin, ULB, Brussels, Belgium). For the detection of HDM-specific IgG1, 

microtiter plates were coated with HDM extract. Serum was added, followed by a 

horseradish peroxidase (HRP) conjugated polyclonal goat anti-mouse IgG1 antibody (Bethyl 

Laboratories, Montgomery, USA). Levels of HDM-specific IgG1 were reported in optical 

densities (OD). MLN supernatants were assayed for IL-4, IL-5, IL-13, IL-10 and IFN-gamma by 

means of multiplex (Merck Millipore, Brussels, Belgium). In the supernatants of crushed 
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lungs, IL-25, IL-33, TSLP, GM-CSF and IL-1β were measured with ELISA (R&D Systems, 

Abingdon, UK) following the manufacturer’s instructions.  

Assessment of airway responsiveness 

Airway responsiveness was measured in tracheostomized anaesthetized mice using the 

FlexiVent System (SCIREQ, Montreal, QC, Canada). Neuromuscular blockade was induced by 

injecting pancuronium bromide (1 mg/kg) intravenously. To check for airway 

hyperresponsiveness, mice were challenged with increasing doses of carbachol (0, 5, 10, 20, 

40, 80, 160 and 320 μg/kg). A “snapshot perturbation” manoeuvre was imposed to measure 

the (dynamic) resistance (R) of the whole respiratory system (airways, lung and chest wall). 

For each mouse, a dose-response curve was generated and the area under the curve (AUC) 

was calculated. 

Evaluation of DC migration by intratracheal instillation of fluorescent HDM 

To obtain fluorescently labelled HDM, HDM extract (Greer Laboratories, Lenoir, NC, USA) 

was dialysed against a carbonate-bicarbonate buffer (pH 9.5), overnight at 4°C.  10mg/ml 

FITC in DMSO (Sigma Aldrich, Bornem, Belgium) was added to the HDM solution and rotated 

for 1 hour at room temperature. The whole procedure was performed under dark, sterile 

conditions. After 4 days of CS exposure, anesthetized mice (i.p. ketamine (80 mg/kg; 

Ketamine 1000 CEVA; Ceva Sante Animale, Brussels, Belgium) – xylazine (8 mg/kg; Rompun 

2%; Bayer AG, Leverkusen, Germany)) were held vertically and 50 μl of FITC conjugated HDM 

(100 μg) or PBS was pipetted just above their vocal cords. Mice were sacrificed 0, 24 and 48 

hours after instillation. MLN were removed and processed as described above.  

Discrimination in the mLN between the airway derived (AW-DCs) (CD11cint-high/MHCIIhigh) and 

non-airway derived DCs (NAW-DCs) (CD11c+/MHCIIint) was performed using the method 

published by Vermaelen et al 21.  The % of HDM-bearing airway-derived DCs (AW-DCs) was 

determined by flow cytometry as the fraction of FITC+ MHCIIhigh CD11cint-high cells.  The results 

were expressed as the % of FITC+ DCs regarding to the total DC population. 

Statistical analysis 

Statistical analysis was performed with PASW Statistics 18 using nonparametric tests.  The 

different experimental groups were compared by a Kruskall-Wallis test for multiple 
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comparisons.  Pairwise comparisons were made by means of a Mann-Whitney U-test. A p-

value p ≤ 0.05 was considered significant. Reported values are expressed as mean ± SEM. 
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4. Results 

 

4.1. CS facilitates the development of new onset allergic asthma 

 

To evaluate the role of CS in the 

pathogenesis of HDM-induced 

allergic asthma, Balb/c mice were 

exposed to CS or air for 3 weeks and 

instilled with HDM (25 μg) or PBS 

once a week (Figure 1 – Protocol 1). 

We instilled 4 times less HDM 

compared with our previously 

described model 23, in order to limit 

the biological effects of HDM on its 

own. 

 

 

Figure 1: Exposure protocols.  4 groups 
were included in our experimental set-up: 
PBS/air, PBS/CS (sole CS), HDM/air (sole 
HDM) and HDM/CS. Abbreviations: PBS = 
phosphate buffered saline, HDM = house 
dust mite, CS = cigarette smoke 
 

 

4.1.1. Exposure to both HDM and CS aggravates the allergic response in BAL fluid and lung  

The intranasal delivery of sole HDM elicited a faint asthmatic phenotype with increased 

eosinophils, CD11b+ DCs and CD4+ and CD8+ T lymphocytes as compared to PBS exposed 

control mice (Figure 2). CS exposure as such enhanced the amount of total cells and 

macrophages (data not shown), neutrophils, CD11b+ DCs and CD4+ and CD8+ T lymphocytes 

in the BAL fluid compared to air exposed mice (Figure 2). The concomitant exposure to HDM 

and CS amplified the allergic phenotype considerably.  This is reflected by a 10-fold increase 

in the number of eosinophils and a rise in CD11b+ DCs and CD4+ and CD8+ T lymphocytes in 

BAL fluid as compared to the other groups. No further increase in macrophages (data not 

shown) or neutrophils was observed (Figure 2).  
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Figure 2: Inflammatory response from mice simultaneously exposed to phosphate buffered saline (PBS) or 
house dust mite (HDM), combined with air or cigarette smoke (CS) for 3 weeks. Cell differentiation of 
bronchoalveolar lavage (BAL) fluid. Results are expressed as means ± SEM; n=10 animals/group.  *p<0.05; 
**p<0.01; ***p<0.001. 
 

In line, lung single cell suspensions had more CD11b+ DCs and activated CD4+CD69+ and 

CD8+CD69+ T cells as compared to sole HDM or CS (Figure 3a). Histological analysis revealed 

peribronchovascular eosinophilic inflammation and mucin-producing goblet cells in HDM 

exposed mice, compared with naive control mice (Figure 3b,c). However, exposure to both 

CS and HDM, resulted in a further increase of eosinophils, goblet cells and mast cells (Figure 

3b,c,d). Other features of airway wall remodelling, such as quantification of airway smooth 

muscle content, revealed no differences between the 4 groups (data not shown). 

4.1.2. Combined exposure to HDM and CS increases HDM-specific IgG1 production in serum 

Total serum IgE did not differ between the 4 groups (data not shown), but HDM exposed 

mice showed significantly elevated allergen-specific IgG1 titers in the serum, compared with 

naive control mice. This level was further increased after combined exposure to HDM and CS 

(Figure 4a). HDM-specific IgE measurements were below detection limit.   

 

4.1.3. Concomitant exposure to HDM and CS amplifies the production of Th2 cytokines  

HDM restimulated mLN cells from the sole HDM group showed increased production of the 

inflammatory cytokines IL-4, IL-5, IL-13 and IL-10, together with decreased levels of the 

typical Th1 cytokine IFN-γ (Figure 4b). The HDM/CS combination yielded in a further increase 

in IL-4, IL-5, IL-13 and IL-10 (Figure 4b).  IFN-γ had a further tendency to decrease (Figure 4b).  

The role of the epithelium was investigated by measuring innate pro-Th2 cytokines in lung 

homogenate.  Exposure to both HDM and CS, resulted in more IL-25, IL-33 and IL-1β (Figure 

4c).  TSLP and GM-CSF were below detection limit. 
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Figure 3: Histopathological evaluation from mice simultaneously exposed to phosphate buffered saline (PBS) 
or house dust mite (HDM), combined with air or cigarette smoke (CS) for 3 weeks. a) Cell differentiation of 
lung digest. b) Photomicrographs of eosinophilic peribronchial infiltrates. c) Photographs of goblet cells. d) Total 
number of mast cells. Results are expressed as means ± SEM; n=10 animals/group.  *p<0.05; **p<0.01; 
***p<0.001. 
 
 

4.1.3. Concomitant exposure to HDM and CS amplifies the production of Th2 cytokines 

HDM restimulated mLN cells from the sole HDM group showed increased production of the 

inflammatory cytokines IL-4, IL-5, IL-13 and IL-10, together with decreased levels of the 

typical Th1 cytokine IFN-γ (Figure 4b). The HDM/CS combination yielded in a further increase 

in IL-4, IL-5, IL-13 and IL-10 (Figure 4b).  IFN-γ had a further tendency to decrease (Figure 4b).  

The role of the epithelium was investigated by measuring innate pro-Th2 cytokines in lung 

homogenate.  Exposure to both HDM and CS, resulted in more IL-25, IL-33 and IL-1β (Figure 

4c).  TSLP and GM-CSF were below detection limit.  
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4.1.4. CS exposure exacerbates HDM-induced airway hyperresponsiveness  

Figure 4d shows the dose-response curve of the in vivo reactivity of all 4 groups.  HDM or CS 

exposed mice were slightly responsive towards the highest carbachol dose. Mice 

concomitantly exposed to both stimuli were more responsive (Figure 4d). 

 

Figure 4: Immunoglobulins, cytokines and airway hyperresponsiveness of mice simultaneously exposed to 
phosphate buffered saline (PBS) or house dust mite (HDM), combined with air or cigarette smoke (CS) for 3 
weeks. a) HDM-specific IgG1.  b) Protein levels of IL-4, IL-5, IL-13, IL-10 and IFN-γ in the supernatant of HDM 
restimulated lymph node cells. c) Measurements of IL-25, IL-33 and IL-1β in supernatant of crushed lungs. d) 
Airway hyperresponsiveness to carbachol. Dose-response curve and area under the curve (AUC). Results are 
expressed as means ± SEM; n=10 animals/group. *p<0.05; **p<0.01; ***p<0.001. 

 

4.2. CS exposure during sensitization and not during allergen challenge is important for 

subsequent asthma development 
 

To investigate the putative role of CS during sensitization, Balb/c mice were briefly exposed 

to CS (for 4 consecutive days) and instilled with HDM (25 μg) once a week during 3 

consecutive weeks (Figure 1 – Protocol 2).  In the sera of HDM/CS exposed mice, enhanced 

allergen-specific IgG1 titers were detected (Figure 5a). In contrast to Protocol 1, where mice 

received CS for 3 weeks, we observed no neutrophils after limited CS exposure in Protocol 2. 

(Figure 5b). Mice concomitantly exposed to HDM and only 4 days of CS showed more BAL 

CD11b+ DCs, CD4+ and CD8+ T-lymphocytes in comparison to all other groups and had a 20-

fold increase in the number of BAL eosinophils (Figure 5b). Compared to Protocol 1, the 
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inflammation in BAL fluid was less pronounced and even in lung single cell suspensions, the 

number of DCs and T-lymphocytes no longer increased upon combined HDM/CS exposure  

(Figure 5c). Histological examination revealed however significantly more eosinophils (Figure 

5d) and goblet cells in the airway wall (Figure 5e) together with increased airway 

hyperresponsiveness in concomitantly exposed mice (Figure 6a).  

 

Figure 5: Immunoglobulins, inflammatory response and histopathological evaluation of mice simultaneously 
exposed to phosphate buffered saline (PBS) or house dust mite (HDM) and 4 days of air or cigarette smoke 
(CS). a) HDM-specific IgG1. b) Cell differentiation of bronchoalveolar lavage (BAL) fluid and c) lung digest. d) 
Quantification of eosinophils.  e) Measurement of goblet cells.  Results are expressed as means ± SEM; n=10 
animals/group. *p<0.05; **p<0.01; ***p<0.001. 
 

 

Altogether, these Th2 associated airway responses were accompanied by increases in IL-4, 

IL-5, IL-13 and IL-10 in the supernatant of restimulated mLN cultures of HDM/CS exposed 

mice (Figure 6b), but no differences in IL-25, IL-33 and IL-1β production could be observed 

between all 4 groups (Figure 6c).   
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Figure 6: Airway hyperresponsiveness to carbachol and cytokine responses of mice simultaneously exposed to 
phosphate buffered saline (PBS) or house dust mite (HDM) and 4 days of air or cigarette smoke (CS).  a) Dose-
response curve to carbachol and area under the curve (AUC). b) Protein levels of IL-4, IL-5, IL-13 and IL-10 in 
supernatant of HDM restimulated lymph node cells. c) Measurements of IL-25, IL-33 and IL-1β in supernatant of 
crushed lungs. Results are expressed as means ± SEM; n=10 animals/group. *p<0.05; **p<0.01; ***p<0.001. 
 
 

On the contrary, exposure to CS exclusively during the HDM challenge phase (Figure 1 – 

Protocol 3) was unable to induce an allergic phenotype and did not show increased HDM 

specific IgG1 (Figure 7a), nor elevated numbers of eosinophils, CD11b+ DCs or T lymphocytes 

in BAL fluid (Figure 7b) and lung tissue, except for a rise of CD4+CD69+ T cells in the lung 

(Figure 7c). Additionally, we found no increase in the number of goblet cells (Figure 7d) or 

airway hyperresponsiveness in these mice (Figure 7e).  

 

4.3. Short exposure to CS enhances HDM uptake and DC migration to the mLN and 

facilitates sensitization to common aeroallergens 

To investigate if 4 days of smoke inhalation already affects airway DC trafficking and antigen 

transport to the draining LNs, we delivered fluorescently labelled HDM intratracheally to CS 

or air exposed mice. FITC+ DCs were exclusively found within the population of CD11cint-

high/MHCIIhigh AW-DCs. At various time points after HDM instillation (24h, 48h), CS exposed 

mice showed a marked increase in DC-mediated HDM transport to the draining LNs, 

compared to air exposed mice (Figure 8a). 
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Figure 7: Immunoglobulins, inflammatory response, histopathological evaluation and airway hyperrespon-
siveness of mice simultaneously exposed to phosphate buffered saline (PBS) or house dust mite (HDM) and 
air or cigarette smoke (CS) during the allergen challenge phase. a) HDM-specific IgG1. b) Cell differentiation of 
bronchoalveolar lavage (BAL) fluid and c) lung digest. d) Quantification of goblet cells. e) Airway 
hyperresponsiveness to carbachol. Results are expressed as means ± SEM; n=10 animals/group. *p<0.05; 
**p<0.01; ***p<0.001. 
 

 

To characterize the role of CS during initial sensitization towards common aeroallergens, we 

exposed Balb/c mice to CS for 3 consecutive days and instilled HDM allergens on the first day 

(25μg) (Figure 1 – Protocol 4). This short interaction between CS and HDM allergens 

significantly increased the number of CD11b+ DCs in BAL fluid and lung tissue (Figure 8b,c), 

with enhanced activation of BAL DCs, as read out by the expression of CD86 (Figure 8b). At 

the functional level, we found that brief exposure to CS during the first contact with HDM 

allergens was sufficient to induce sensitization in the mLN, characterized by a pronounced 

Th2 cytokine profile in HDM/CS exposed mice (Figure 8d).  To explain this heightened state 

of allergen-specific sensitization, we measured typical DC-activating cytokines, released by 

bronchial epithelial cells early in the sensitization process.  TSLP and GM-CSF were below 

detection limit, but IL-25, IL-33 and IL-1β were elevated in CS exposed mice (Figure 8e). IL-1β 

increased further after concomitant exposure to HDM and CS. 
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Figure 8: Migration, recruitment and maturation of pulmonary DCs and corresponding cytokine profiles upon 
phosphate buffered saline (PBS) or house dust mite (HDM) and acute air or cigarette smoke (CS) exposure. a) 
Dendritic cell (DC) migration to the mediastinal lymph nodes. b) CD11b+ DCs and expression of CD86 on BAL DCs 
c) and lung DCs (calculated within the population of low autofluorescent, CD11c+, MHCII+ DCs). d) Protein levels 
of IL-4, IL-5 and IL-13 in HDM restimulated lymph node cells. e) Measurements of IL-25, IL-33 and IL-1β in 
supernatant of crushed lungs.  Results are expressed as means ± SEM; n=10 animals/group. *p<0.05; **p<0.01; 
***p<0.001. 
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5. Discussion 

 

In this paper, we demonstrate that cigarette smoke (CS) exposure can play a determining 

role during allergic sensitization and asthma development. (i) We show that concomitant 

exposure to CS and a low dose of house dust mite (HDM) results in a pronounced Th2-

related asthmatic phenotype, which is hardly present when sole HDM is used. In addition, 

we demonstrate that, (ii) in the presence of allergens, acute CS exposure is sufficient to 

cause sensitization and subsequent asthma development, (iii) possibly by the amplified 

allergen transport of airway DCs towards the mLNs. 

 

The strongest predictive factor for asthma development is the sensitization to common 

environmental allergens, like house dust mites (HDMs), grass pollen or animal dander. 

Epidemiological studies provide indirect clinical evidence that smoking is associated with 

increased sensitization to HDM allergens 24. Smoke exposure is even correlated with higher 

asthma incidence and severity of the disease. Especially children become more susceptible 

due to smoke exposure, as illustrated by the increased wheeze and asthma prevalence 

among children and young adolescents upon passive smoke inhalation 25.  

Within our lab, we created a murine model, supporting the findings from epidemiological 

studies and using HDM as clinically relevant allergen. HDM is the most significant source of 

indoor allergens, responsible for atopic symptoms in 10% of individuals. It is a complex 

mixture of various protein allergens and non-protein compounds, with some allergens 

having the natural capacity to induce mucosal sensitization through the respiratory tract 24. 

Although the content of commercially available preparation of HDM extract can vary 

extensively 26, these extracts might be a good representation of the indoor HDM allergens, 

present in our homes. To examine whether CS can lower the threshold for asthma 

development, we first created a mild murine asthma model by down-titration of the HDM 

protein content until almost no asthmatic phenotype could be elicited (data not shown). 

Such models are relevant to evaluate potential synergistic effects upon CS inhalation. 

In this paper, we demonstrate that CS exposure facilitates and aggravates the asthmatic 

disease, as illustrated by the increased eosinophils and neutrophils in BAL. These  findings 

are in agreement with our previous work, investigating the role of CS in asthma 

development with ovalbumin (OVA) as “surrogate” allergen 15,27. However, OVA is no 
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naturally occurring allergen and prolonged exposure elicits inhalation tolerance, rather than 

allergic inflammation in mice 28.  

An important novelty of our study, using adolescent mice of 6-8 weeks old, is the striking 

result that only 3 days of CS exposure during the initial allergen contact are sufficient to 

prime HDM-specific Th2 cells in the LNs. This process might be driven by the enhanced HDM 

transport of the airway DCs. Our findings suggest that adolescent smokers and young 

children, may become more susceptible to allergic sensitization and ensuing asthma 

development, due to (short) CS inhalation. To our opinion, these results can be extrapolated 

to humans, since our murine CS exposure protocol reaches carboxyhemoglobin (COHb) 

levels comparable to those in human smokers 29,30 and since COHb levels of young children 

(aged 1-2) exposed to parental smoke are similar to those measured in adult smokers 31.  

Furthermore, we focussed on the release of innate pro-allergic cytokines, known to instruct 

DCs to mount Th2-mediated cell responses in the lung 32. Three weeks of HDM and CS 

exposure resulted in significantly more IL-25, IL-33 and IL-1β.  In contrast, when stopping CS 

exposure after the initial sensitization, no differences in these cytokines were found 2 weeks 

after smoke cessation. This suggests a synergistic role for CS, particularly during the ongoing 

allergic response and illustrates the direct impact of CS on airway epithelial cells and on the 

release of innate pro-Th2 cytokines, the driving force in activating DCs and ensuing asthma 

development. IL-1β and IL-33 were even increased after 1 HDM administration concomitant 

with 3 days of smoke exposure, suggesting a role for these cytokines during the sensitization 

phase and in facilitating the sensitization process due to CS. This idea is supported by Willart 

et al. confirming the role of these cytokines early in asthma development. Neutralizing IL-1β 

during HDM sensitization reduced the production of Th2 cytokines, whereas blocking IL-33 

signalling at the time of sensitization decreased the number of eosinophils and lymphocytes 

in the BAL 33. 

 

To our knowledge, this is the first in vivo model showing unambiguous synergy between CS 

and HDM allergens. In line with our observation, Rusznak et al. found increased 

inflammatory mediator release from primary in vitro cultures of human bronchial epithelial 

cells, after exposure to CS and Der p allergens 34. Blacquière et al. examined the effect of 

maternal smoking during pregnancy 35. Upon HDM exposure, mice offspring of smoking 

mothers showed increased airway wall remodelling and AHR, but no increase in 

117



                                                                                                                             

 

 

118 

inflammatory response or elevated Th2 cytokines could be demonstrated in HDM/CS 

exposed mice. Mitchell et al. investigated the role of progesterone and, or CS in exacerbating 

allergic airway disease. Although the difference in experimental setup, they found some 

indications for increased allergic inflammation due to CS, however less pronounced than in 

our model 36,37. In contrast to our current findings, a recent study by Botelho et al. 38 using a 

murine model of established allergic asthma, reported significantly attenuated eosinophilia 

in BAL fluid of mice exposed to both HDM and CS, together with decreased mucus 

production and no difference in CD4+ T cell activation nor AHR between HDM and, or CS 

exposed mice.   

Disparities between our data and the studies mentioned above, might be related to 

fundamental differences in allergen and CS exposure protocol, such as the use of alum as 

Th2 skewing adjuvant 36,37 or the timing, duration and intensity of smoke exposure. In 

addition, the variability between commercially available preparations of HDM extract (e.g. 

endotoxin content) may affect the development of potential Th2 responses in the lung 38.  

Compared to the previous studies, our model is innovative since we show synergy using a 

mild asthma model and a short CS exposure protocol. The clear distinction between the 

sensitization and allergen challenge phase, made it possible to examine the impact of CS on 

different phases of asthma pathogenesis.  Because of the diversity of asthma phenotypes, 

preclinical mouse models of combined exposures to allergens and environmental pollutants 

will become more important in the future. Combination models mimic more closely the real- 

life situation in humans and are therefore more reliable to provide mechanistic insights and 

to test potential therapeutic strategies. 

 

In conclusion and in agreement with epidemiological studies, we provide biological 

mechanistic data, supporting the hypothesis that environmental factors such as cigarette 

smoke, are risk factors for sensitization and ensuing asthma development. We found that 

even short-term cigarette smoke exposure can lower the threshold for allergen sensitization, 

making individuals more vulnerable to future asthma development. 
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1. Abstract 

 

Objective: Cigarette smoke (CS) exposure is associated with increased asthma development 

in children and adults. The aim of the study was to obtain mechanistic insights into the role 

of CS as a risk factor for allergic sensitization and subsequent asthma development, with the 

main focus on the airway epithelium. 

Methods: To unravel the impact of CS during mucosal sensitization or asthma development, 

mice were subjected to whole body CS (3 times/day, 5 days/week) or air, combined with 

house dust mite extract (HDM) or PBS (intranasal, 1/week) for 3 days or 3 weeks. 

Results: Expression analysis of E-cadherin in mice exposed to HDM or CS for 3 days showed 

no significant changes in epithelial integrity. However, the induction of early Th2 immunity 

as well as the inflammatory response upon acute HDM/CS exposure were IL1RI dependent. 

In addition, investigation of danger-associated molecular pattern molecules, revealed uric 

acid as well as hyaluronan to be additionally increased upon acute and, or prolonged 

concomitant HDM/CS exposure. 

Conclusion: Preliminary results point to a role for IL1RI signaling, uric acid and hyaluronan 

during increased allergic sensitization or asthma development upon CS inhalation. However, 

additional experiments are needed to further elucidate the airway epithelial function. 
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2. General introduction 

 

Although individuals with asthma are often genetically predisposed, the interaction with 

environmental factors is critical for the expression of the disease 1. Epidemiological studies 

have demonstrated that cigarette smoke (CS) exposure is a major risk factor in the 

development or aggravation of asthma 2,3. To obtain mechanistic insights into the role of CS 

as adjuvant during allergic sensitization and ensuing asthma development, we previously 

designed a murine model of facilitated allergic inflammation after acute (3 days) and 

prolonged (3 weeks) concomitant house dust mite (HDM) and CS inhalation 4. We 

demonstrated that acute CS exposure during primary allergen sensitization may induce local 

Th2 immunity in the lymph nodes. Because respiratory epithelial cells play a pivotal role in 

asthma pathogenesis 5, we focused on the airway epithelium as a key factor in promoting 

early mucosal sensitization in the lung. More precisely, we investigated potential 

contributions of the airway epithelial barrier function, IL1RI signaling and damage associated 

molecular pattern (DAMP) molecules.  
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3. The role of the airway epithelial barrier function during allergic sensitization 

 

3.1. Introduction 

The airway epithelium acts as a physical barrier between the internal and external milieu of 

the lungs. To protect against inhalants, the epithelial integrity depends on tight junction (e.g. 

occludin, claudin, ZO-1) and adherens junction molecules (e.g. E-cadherin), which form 

adhesive forces between adjacent epithelial cells 6. In asthma, the airway epithelium is often 

compromised, possibly the result of proteolytic activity from inhaled aeroallergens or as a 

result of irritant compounds. Indeed, HDM allergens, as well as CS, have been shown to 

damage airway epithelial cells, by decreasing the E-cadherin expression 7,8 or disrupting tight 

junction proteins 8-11. To explain the observed increase in allergic sensitization due to CS 

inhalation, we hypothesize that CS may synergize with HDM allergens to further decrease 

the epithelial barrier function. Decreased epithelial integrity may facilitate transepithelial 

delivery of HDM allergens to antigen-presenting cells, hence increasing the sensitization risk.  

 

3.2. Preliminary results 

3.2.1. Analysis of epithelial integrity after acute HDM/CS exposure 

To investigate the role of the epithelial barrier function during CS-induced facilitated 

sensitization, we exposed mice to CS for 3 days, instilled HDM on the first day (Figure 1) and 

measured the E-cadherin expression on lung tissue sections. We observed no significant 

difference in E-cadherin expression between all 4 groups, although the E-cadherin level of 

some individual subjects within the PBS/air groups appeared to be higher. (Figure 2a,b).  

 

 

 

 

 

 
 
Figure 1: Exposure protocol 1.  To analyse whether short cigarette smoke inhalation during primary allergen 
contact, facilitates allergic sensitization, we exposed male mice (n= 8 à 10) for 3 days to cigarette smoke and 
instilled HDM (Greer) at the first day. 4 groups were included in our experimental set-up: PBS/air, PBS/CS (sole 
CS), HDM/air (sole HDM) and HDM/CS. 
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Figure 2: E-cadherin membrane expression in Balb/c mice simultaneously exposed to phosphate buffered 
saline (PBS) or house dust mite (HDM) and 3 days of air or cigarette smoke (CS). a) Photomicrographs of E-
cadherin staining between airway epithelial cells. b) Quantification of E-cadherin positive staining, with levels 
expressed as the percentage of E-cadherin positivity relative to the total surface area of the airway epithelium. 
Each individual point refers to the mean E-cadherin staining per mouse, measured on at least 7 lung sections. 
Means are shown ; n=8 à 10 animals/group. *p<0.05; **p<0.01; ***p<0.001. 
 
 

3.3. Discussion 

We investigated the role of the airway epithelial barrier function during CS-induced allergic 

sensitization in mice. Although we did not find significant differences between all 4 groups, 

some individual E-cadherin values within the PBS/air control group seemed to be higher, 

which is in line with previous findings from the literature. De Boer et al. demonstrated 

decreased E-cadherin expression in bronchial biopsies from atopic asthmatic patients 

compared with non-atopic controls 8. In addition, in vitro studies on human bronchial 

epithelial cells revealed a transient fall in E-cadherin after HDM stimulation 7,12 and reduced 

the expression of epithelial tight junction proteins upon exposure to CS extract 13.  

Future experiments will be performed on larger experimental groups to increase the power 

of the E-cadherin analysis. Moreover, because possible differences in E-cadherin expression 

may become more explicit after a more prolonged exposure period, the expression analysis 

will also be performed in a more extended 3 week exposure protocol 4. 
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4. The role of IL1RI signaling during CS-induced allergic sensitization 

 

4.1. Introduction 

Activation of airway epithelial cells has been shown to release innate pro-allergic cytokines, 

such as thymic stromal lymphopoietin (TSLP), granulocyte macrophage colony-stimulating 

factor (GM-CSF) or interleukin (IL)-1 14-16. We previously showed that IL-1β is significantly 

increased during facilitated sensitization due to CS inhalation 4. IL-1α and IL-1β are both pro-

inflammatory isoforms, acting on the same IL1RI receptor. Although IL-1α is generally 

released as an ‘alarmin’ 17, both cytokines are enhanced in response to inflammatory stimuli. 

IL-1α and IL-1β are both synthesized as precursor proteins and unlike IL-1α, the IL-1β 

precursor form requires proteolytic cleavage to become fully activated (generally performed 

by caspase-1) 18. Upon IL1RI activation, transcription factors NF-κB or AP-1 are stimulated to 

further express pro-inflammatory genes. Because the IL-1 signaling pathway is involved in 

many inflammatory disorders, such as rheumatoid arthritis or asthmatic disease, we are 

interested whether the IL1RI signaling is important to facilitate allergic sensitization upon CS 

inhalation. 

 

4.2. Preliminary results 

4.2.1. IL-1β but not IL-1α is increased after acute HDM/CS exposure 

Because IL-1α and IL-1β are both cytokines with shared biological activity, we were 

interested whether IL-1α, like IL-1β (see Chapter 6.2.), is significantly increased after acute 

HDM/smoke exposure (Figure 1). 3 days of CS exposure increased the level of IL-1α in lung 

homogenates, however in contrast to IL-1β, no additional increase could be found after 

exposure to HDM and CS together (Figure 3a,b).  

 
Figure 3: Pulmonary levels of IL-1α 
and IL-1β in mice concomitantly 
exposed to phosphate buffered 
saline (PBS) or house dust mite 
(HDM) and 3 days of air or cigarette 
smoke (CS). a) IL-1a and b) IL-1b in 
lung homogenate of Balb/c mice, 
measured by ELISA. Results are 
expressed as means ± SEM; n=8 
animals/group. *p<0.05; **p<0.01; 
***p<0.001. 
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4.2.2. IL1RI is implicated in acute HDM/CS-induced pulmonary inflammation 

To further unravel the role of IL-1 during CS-induced facilitated allergic sensitization, we 

concomitantly exposed WT and IL1RI KO mice to CS for 3 days and instilled HDM on the first 

day (Figure 1). In accordance with our previous results 4, C57Bl/6 WT mice exposed to a 

combination of HDM and CS had significantly more BAL and lung CD11b+ DCs (Figure 4a,b), 

and additionally more BAL neutrophils (Figure 4c). In contrast, HDM/CS treated IL1RI KO 

mice were protected against this acute increase of inflammatory cells (Figure 4a,b,c). At this 

short time point, no eosinophils could be enumerated. 

 

Figure 4: The effect of IL1RI deficiency on pulmonary inflammation and the development of local Th2 
immunity in C57/Bl6 mice concomitantly exposed to phosphate buffered saline (PBS) or house dust mite 
(HDM) and 3 days of air or cigarette smoke (CS). a) % of CD11b+ dendritic cells (DC) in bronchoalveolar lavage 
(BAL) and b) lung digest using flow cytometry. c) % of neutrophils in BAL fluid quantified on cytospins. d) Protein 
levels of IL-4, e) IL-5 and f) IL-13 in the supernatant of HDM restimulated lymph node cells, measured by ELISA. 
Results are expressed as means ± SEM; n=8 animals/group. *p<0.05; **p<0.01; ***p<0.001. 
 
 
4.2.3. IL1RI is involved in the development of local Th2 sensitization in the lymph nodes 

To check whether IL1RI is necessary to prime local Th2 responses in the draining lymph 

nodes, mediastinal lymph node cells from WT and IL1RI KO mice were cultured in vitro and 

restimulated with HDM. Culture supernatant of HDM/CS treated WT mice revealed more IL-

4, IL-5 and IL-13 compared to all control groups. However, in contrast, IL1RI KO mice were 

protected against CS-induced allergic sensitization, as illustrated by lower levels of Th2 

cytokines (Figure 4d,e,f).  
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4.3. Discussion 

We evaluated the role of IL1RI during CS-induced facilitated sensitization. Using knockout 

mice, we showed that both the cellular influx as well as the induction of early Th2 immunity 

were IL1RI dependent. Previous work already demonstrated the IL1RI dependence during 

CS- 19-21 or HDM-induced inflammation 15,22, however we are the first to display the 

importance after combined HDM/CS inhalation during the early sensitization phase. In 

conflict with Willart et al, HDM-treated IL1RI-/- mice were not fully protected against Th2 

sensitization, a discrepancy that might be explained because of differences in exposure 

protocol and timing of analysis. Furthermore, in line with Pauwels et al, 3 days of CS 

inhalation already enhanced the level of IL-1α and IL-1β in lung homogenate, though 

concomitant HDM/CS inhalation only additionally increased IL-1β. This finding suggests a 

potential role for the IL-1β – IL-1RI pathway during CS-induced facilitated sensitization, 

however, neutralization with blocking antibodies is required to confirm this assumption.  
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5. The role of DAMP molecules during sensitization and subsequent asthma development 

 

5.1. Introduction 

Upon epithelial injury or cellular stress, damage associated molecular pattern (DAMP) 

molecules or ‘alarmins’ are released to alert the host. DAMP molecules are sensed by the 

innate immune system through pathogen recognition receptors (PRRs) and are known to 

orchestrate airway inflammation by the recruitment of innate inflammatory cells. Uric acid, 

as well as, high-mobility group box 1 or hyaluronic acid are a few examples of DAMP 

molecules, which are markedly increased in pulmonary secretions of patients with asthma 23-

26. Endogenous uric acid (UA) crystals are the metabolic breakdown product of purine 

nucleotides. UA is released from dying or stressed cells and is known to promote Th2 

immunity through the activation of inflammatory DCs 23. High-mobility group box 1 (HMGB-

1) is a highly conserved chromatin binding protein 27, which enhances the production of pro-

inflammatory cytokines by activating neutrophils and DCs 28,29. Hyaluronic acid (HA) is a high 

molecular weight (HMW >1 x 106) polysaccharide, ubiquitously present in the extracellular 

matrix of all vertebrates. Upon tissue damage or inflammation, HMW HA breaks down into 

small low molecular weight (LMW) fragments (average molecular mass of 25 x 104 Da) with 

various pro-inflammatory properties, such as enhanced maturation of DCs 30 or activation of 

alveolar macrophages 31. HA synthase genes Has1 and Has2 are responsible for the 

production of HMW HA, while Has3 creates LMW fragments. In addition, hyaluronidase 

Hyal2 degrades HMW HA into LMW fragments, which are further degraded into 

oligosaccharides by Hyal1 encoded enzymes 32. Since DAMP molecules are released upon 

tissue damage or stress, we hypothesize that CS may synergize with HDM allergens to 

further increase epithelial injury and the release of DAMP molecules.  

 

5.2. Preliminary results 

5.3.1. Uric acid is increased after acute and prolonged HDM/CS exposure 

3 days of CS inhalation and one HDM application (Figure 1) significantly increased the level 

of uric acid (UA) in lung homogenate, compared to sole HDM or CS exposed mice (Figure 5a). 

The difference in UA concentration between the experimental groups, became even more 

pronounced after 3 weeks of concomitant HDM/CS exposure (Figure 5b) (Figure 6), meaning 

that UA might be an important trigger during CS-induced facilitated sensitization and 

131



 

132 

subsequent asthma development. No difference in BAL uric acid concentrations were 

measured between the groups (data not shown). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Pulmonary levels of uric acid a) in Balb/c mice simultaneously exposed to phosphate buffered saline 
(PBS) or house dust mite (HDM) combined with air or cigarette smoke (CS) for 3 days or b) 3 weeks. Results are 
expressed as means ± SEM; n=8 animals/group. *p<0.05; **p<0.01; ***p<0.001. 
 

 
 

 

 

 

 

Figure 6: Exposure protocol 2.  To evaluate the effect of cigarette smoke on the development of HDM-induced 
allergic asthma, we exposed mice to cigarette smoke for 3 consecutive weeks and instilled HDM extract once a 
week. 4 groups were included in our experimental set-up: PBS/air, PBS/CS (sole CS), HDM/air (sole HDM) and 
HDM/CS. 

 

5.3.2. Hyaluronan is increased after prolonged, concomitant HDM and CS exposure  

The level of total hyaluronan in BAL fluid was enhanced after 3 days of CS exposure (Figure 

1) (Figure 7a), but even further increased after a more prolonged and concomitant exposure 

to HDM and CS for 3 weeks (Figure 6) (Figure 7b). Within the 3 week exposure model, we 

quantified the deposition of HA in the airway wall after immunohistochemical staining of 

lung tissue sections. Using color recognition, quantification revealed no difference between 

all 4 groups (Figure 7c). To find an explanation for the enhanced concentration of HA in BAL 

fluid after 3 week of HDM and CS, we studied the expression of the HA synthase and 

hyaluronidase genes on total lung. RT-PCR revealed a significant decrease of the mRNA 

expression of Has1 after sole HDM or CS exposure and an increased expression of Has3 after 

CS inhalation (Figure 7d,e). In addition, no difference in the expression profile of Has2, Hyal1 

and Hyal2 was found between the groups (data not shown).  
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Figure 7: The role of hyaluronic acid (HA) during concomitant exposure to phosphate buffered saline (PBS) or 
house dust mite (HDM) combined with air or cigarette smoke (CS). a) Protein levels of HA in Balb/c mice 
exposed to PBS or HDM, combined with air or CS for 3 days. b) Protein levels of HA in mice exposed to PBS or 
HDM, combined with air or CS for 3 weeks. c) Quantitative measurement of the HA deposition in lung tissue 
upon 3 weeks of PBS or HDM and air or CS exposure. d) mRNA expression of HA modulating enzymes Has1 and 
e) Has3 in mice concomitantly exposed to PBS or HDM and air or CS exposure of 3 weeks. Results are expressed 
as means ± SEM; n=8 animals/group. *p<0.05; **p<0.01; ***p<0.001. 

 

5.3.3. High-mobility group box 1 is not enhanced after simultaneous HDM/CS exposure 

The evaluation of the HMGB-1 level in BAL fluid after acute HDM/CS exposure revealed no 

difference between the 4 groups (Figure 8a). HMGB-1 was significantly enhanced after 3 

weeks of sole HDM or CS exposure, but not additionally after concomitant exposure to both 

stimuli (Figure 8b). 

 

 

 

 

 
Figure 8: Bronchoalveolar lavage (BAL) levels of high-mobility group box 1 (HMGB-1) a) in Balb/c mice 
simultaneously exposed to phosphate buffered saline (PBS) or house dust mite (HDM) combined with air or 
cigarette smoke (CS) for 3 days or b) 3 weeks and measured by ELISA. Results are expressed as means ± SEM; 
n=8 animals/group. *p<0.05; **p<0.01; ***p<0.001. 
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5.3. Discussion 

We examined the production of DAMP molecules during allergic sensitization and asthma 

development. We observed a significantly higher release of uric acid (UA) upon acute and 

prolonged HDM/CS exposure, suggesting a potential role for this molecule during CS-induced 

facilitated sensitization and asthma progression. UA as been identified as a promoter of 

mucosal Th2 sensitization by amplifying the epithelial production of innate pro-Th2 

cytokines and the activation of DCs 23. Kool et al. elegantly demonstrated the release of 

endogenous UA upon HDM administration 23 or alum injection 33. Because alum has been 

detected at high concentrations in CS 34, the presence of this adjuvant may explain the 

additional release of UA upon concomitant HDM/CS exposure and may clarify the observed 

increase in allergic sensitization upon CS inhalation. Furthermore, UA is a potent antioxidant 

which is produced in response to oxidative stress 35, originating from environmental factors 

such as HDM allergens or CS 36,37. 

In line with previous reports 38,39, we demonstrated increased pulmonary hyaluronic acid 

(HA) after acute CS inhalation. Moreover, BAL levels of HA further enhanced upon prolonged 

and concomitant HDM/CS exposure, illustrating the synergistic effect of CS during ongoing 

allergic inflammation. The observed increase in HA after 3 weeks of concomitant HDM/CS 

exposure, could not be explained from the gene expression profile of HA modulating 

enzymes on total lung. However, mRNA expression of Has1 and Has3 rather suggested a net 

production of pro-inflammatory LMW fragments. Importantly, the possible difference in 

gene expression between various groups, can become lost in total lung. Therefore, it might 

be useful to examine the expression of HA modulating enzymes in more specific cells types, 

such as fibroblasts or airway epithelial cells. 

 

These preliminary results point to a role for DAMP molecules during enhanced CS-induced 

allergic sensitization and asthma development in mice, however additional experiments are 

needed to unravel their impact into more detail. 
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6. Methods 

 

Mice 

Balb/c mice (6-8 weeks old) were purchased from Harlan (Zeist, the Netherlands). 

Homozygous breeding pairs of IL1RI knockout (KO) mice and C57Bl/6 control mice (6-10 

weeks old) were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). Mice were 

bred in the animal facility at the Faculty of Medicine and Health Sciences, Ghent University 

(Ghent, Belgium). Animals were maintained in standard conditions under a 12 hour 

light/dark cycle, provided a standard diet and chlorinated tap water ad libitum. All in vivo 

manipulations were approved by the Animal Ethical Committee of the Faculty of Medicine 

and Health Sciences of Ghent University.  

 

Exposure protocol 

To unravel the impact of CS on the early sensitization phase or on asthma development, 

mice (n = 8 mice per group) were subjected to whole body CS (3R4F Kentucky Reference 

cigarettes), for 3 days (Figure 1) or 3 consecutive weeks (Figure 6) respectively. Control mice 

were exposed to air. 30 minutes after the last smoke exposure, 25 μg HDM extract 

(Dermatophagoides pteronyssinus) (Greer Laboratories, Lenoir, NC, USA) or PBS was 

administered intranasally, once a week. 24 hours after the last smoke exposure and 72 hours 

after the last HDM application, mice were euthanized with an overdose of pentobarbital 

(Sanofi-Ceva, Paris, France).  

 

Bronchoalveolar lavage and cytospins 

A tracheal cannula was inserted and BAL was performed by instillation of 3 x 300 μl of HBSS 

supplemented with 1% BSA (Dade Behring, Eschborn, Germany).  The supernatant of the 

recovered BAL fluid was used for cytokine analysis.  Three additional instillations with 1 ml of 

HBSS plus EDTA were performed to achieve maximal recovery of BAL cells. A total cell count 

was performed in a Bürker chamber and differential cell counts (on at least 400 cells) were 

performed on cytocentrifuge preparations using standard morphologic criteria after May-

Grünwald-Giemsa staining.  Remaining cells were used for FACS-analysis. 
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Lung and mediastinal lymph nodes single-cell suspensions 

Lungs were perfused with saline plus EDTA through the pulmonary artery to remove 

contaminating blood cells. Lungs and mediastinal lymph nodes (mLN) were removed and 

digested as described previously 40. Briefly, minced lung pieces and LNs were incubated with 

1 mg/ml collagenase type 2 (Worthington Biochemical, Lakewood, NY) and 0.02 mg/ml 

DNase I (grade II from bovine pancreas, Boehringer Mannheim, Brussels, Belgium) for 45 min 

at 37°C and 5% CO2. Red blood cells were lysed using ammonium chloride buffer. Finally, cell 

suspensions were filtered through a 50 μm nylon mesh to remove undigested organ 

fragments.  

 

Flow cytometry 

All staining procedures were performed in PBS without Ca2+ or Mg2+ containing 5mM EDTA 

and 1% BSA.  To minimize non-specific binding, single-cell suspensions were pre-incubated 

with Fc-blocking antibody (anti-CD16/CD32, clone 2.4G2). Monoclonal antibodies (mAbs) 

used to identify mouse DC populations were anti-CD11c (clone HL3), anti-I-Ab (clone AF6-

120.1) and anti-CD11b (clone M1/70). In a last step before analysis, cells were incubated 

with 7-aminoactinomycin D (or viaprobe; BD Pharmingen) to check cell viability. Flow 

cytometry data acquisition was performed on a FACSCaliburTM running CellQuestTM software 

(BD Biosciences, San Jose, CA, USA). FlowJo software was used for data analysis (TreeStar 

Inc., Ashland, OR, USA). 

 

Mediastinal lymph node cell culture 

MLN were collected into sterile tubes containing cold (4°C) tissue culture medium (TCM) and 

digested to obtain a single cell suspension. TCM was prepared using RPMI 1640 

supplemented with 5% fetal bovine serum, L-glutamine, penicillin/streptomycin and β-

mercaptoethanol (all from Gibco BRL; Invitrogen Corp). Cells were then transferred in 

triplicate to round-bottom, 96-well plates (Becton Dickinson (BD), BD, CA, USA) with or 

without 15 μg HDM extract/ml culture medium, at a density of 2 x 105 cells per well and 

incubated in a humidified 37°C incubator with 5% CO2.  After 5 days, supernatants were 

harvested and frozen for cytokine measurements. 
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Cytokine and DAMP measurements 

Uric acid was evaluated in BAL supernatant, using the Amplex Red Uric Acid/Uricase Assay 

Kit (Invitrogen, Merelbeke, Belgium). BAL hyaluronan (HA) and HMGB-1 were measured 

using commercially available ELISA kits (Tebu-bio, Boechout, Belgium) (Gentaur, 

Kampenhout, Belgium). IL-α and IL-1β were determined in the supernatant of crushed lungs 

with ELISA (R&D Systems, Abingdon, UK). Within the supernatant of MLN cultures, IL-4, IL-5 

and IL-13 were assayed by means of ELISA (R&D Systems, Abingdon, UK) following the 

manufacturer’s instructions.  

 

Histology 

The left lung was fixated by intratracheal infusion of 4% paraformaldehyde. Histolocalization 

of HA was determined on paraffin sections using biotin-labeled HA-binding protein (HABP-b) 

(Seikagaku, Tokyo, Japan). Sections were subjected to deparaffinization followed by 

rehydration and were stained with HABP-b (2 μg/ml) at room temperature for 1 hour. After 

washing, the DAKO Cytomation Streptavidine ABComplex/HRP system was used according to 

the manufacturer’s instructions (DAKO, Glostrup, Denmark). Enzymatic reactivity was 

visualized with the Vector NovaRED peroxidase substrate kit (Vector, Burlingame, CA). 

Sections were lightly counterstained with hematoxylin and mounted in Faramount (DAKO). 

The HABP-b staining in the airway walls was quantified, using a Zeiss KS400 image analyser 

platform (KS400, Zeiss, Oberkochen, Germany). For the visualization of E-cadherin, lung 

sections were stained with mouse-anti-E-cadherin (1/800, BD Biosciences, Erembodegem, 

Belgium) as described before 12. Immunostains were developed using 3-amino-9-

ethylcarbazole (AEC) substrate and quantifications were performed using color recognition 

by the KS400 software. 

 

RT-PCR 

Total lung RNA was extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany). Real-time 

PCR reactions were performed in duplicate using diluted cDNA (dilution 1:25), 0.6 

pmol/primer (custom designed) and IQ SYBR Green Supermix I dye (Bio-Rad, Hercules, CA) in 

a total volume of 20 μl as described in reference 38. RT-PCR was performed on a LightCycler 

480 Instrument (Roche Diagnostics, Basel, Switzerland). The expression of the hyaluronan 

synthase (Has1, Has2, Has3) and hyaluronidase genes (Hyal1, Hyal2) was corrected by a 
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normalization factor, calculated based on the expression of three reference genes (Hprt1, 

Ppia, Rpl13a).  

 

Statistical analysis 

Reported values are expressed as mean ± SEM. Statistical analysis was performed with PASW 

Statistics 18 using non-parametric tests. The different experimental groups were compared 

by a Kruskal-Wallis test for multiple comparisons. Only when a p-value ≤ 0.05 was obtained 

with the Kruskal-Wallis test, we performed post hoc pairwise comparisons by means of a 

Mann-Whitney U test. A p-value ≤ 0.05 was considered significant. 
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1. Abstract 

 

Background: Cigarette smoke (CS) is a major risk factor for the development of COPD. CS 

exposure is associated with an increased risk of bacterial colonization and respiratory tract 

infection, because of suppressed antibacterial activities of the immune system and delayed 

clearance of microbial agents from the lungs. Colonization with Staphylococcus aureus 

results in release of virulent enterotoxins, with superantigen activity which causes T cell 

activation. 

Objective: To study the effect of Staphylococcus aureus enterotoxin B (SEB) on CS-induced 

inflammation, in a mouse model of COPD. 

Methods: C57/Bl6 mice were exposed to CS or air for 4 weeks (5 cigarettes/exposure, 

4x/day, 5 days/week). Endonasal SEB (10 μg/ml) or saline was concomitantly applied starting 

from week 3, on alternate days. 24 h after the last CS and SEB exposure, mice were sacrificed 

and bronchoalveolar lavage (BAL) fluid and lung tissue were collected. 

Results: Combined exposure to CS and SEB resulted in a raised number of lymphocytes and 

neutrophils in BAL, as well as increased numbers of CD8+ T lymphocytes and granulocytes in 

lung tissue, compared to sole CS or SEB exposure. Moreover, concomitant CS/SEB exposure 

induced both IL-13 mRNA expression in lungs and goblet cell hyperplasia in the airway wall. 

In addition, combined CS/SEB exposure stimulated the formation of dense, organized 

aggregates of B- and T- lymphocytes in lungs, as well as significant higher CXCL-13 (protein, 

mRNA) and CCL19 (mRNA) levels in lungs. 

Conclusions: Combined CS and SEB exposure aggravates CS-induced inflammation in mice, 

suggesting that Staphylococcus aureus could influence the pathogenesis of COPD.  
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2. Introduction 

 

Cigarette smoking is associated with an increased risk of bacterial colonization and 

respiratory tract infection, because of suppressed antibacterial activities of the immune 

system and delayed clearance of microbial agents from the lungs 1. This is particularly 

relevant in COPD patients, where bacterial colonization in the lower respiratory tract has 

been shown 2. These bacteria are implicated both in stable COPD and during exacerbations, 

where most commonly pneumococci, Haemophilus influenza, Moraxella catarrhalis and 

Staphylococcus aureus (S. aureus) are found 3. Interestingly, colonization with S. aureus may 

embody a major source of superantigens as a set of toxins are being produced including S. 

aureus enterotoxins (SAEs) 4. These toxins activate up to 20% of all T cells in the body by 

binding the human leukocyte antigen (HLA) class II molecules on antigen-presenting cells 

(APCs) and specific V beta regions of the T cell receptor 5. Between 50 and 80% of S. aureus 

isolates are positive for at least one superantigen gene, and close to 50% of these isolates 

show superantigen production and toxin activity 6. 

During the last few years, it became increasingly clear that SAEs are known to modify airway 

disease 7, like allergic rhinitis 8, nasal polyposis 9 and asthma 10. Furthermore, studies have 

shown a putative role for SAEs in patients suffering from the atopic eczema/dermatitis 

syndrome (AEDS), where colonization with S. aureus is found more frequently (80-100%) 

compared to healthy controls (5-30%) 11, and S. aureus isolates secrete identifiable 

enterotoxins like Staphylococcus aureus enterotoxin A and B (SEA, SEB) and toxic shock 

syndrome toxin (TSST)-1. Until now, evidence for SAE involvement in the pathogenesis of 

upper airway disease like chronic rhinosinusitis with nasal polyposis (CRSwNP), arises from 

the finding that IgE against SEA and SEB has been demonstrated in nasal polyps 12 and levels 

of SAE-specific IgE in nasal polyposis correlated with markers of eosinophil activation and 

recruitment 13. Similarly, in COPD patients, a significantly elevated IgE to SAE was found, 

pointing to a possible disease modifying role in COPD, similar to that in severe asthma 14. 

Moreover, we have recently demonstrated the pro-inflammatory effect of SEB on human 

nasal epithelial cells in vitro, resulting in augmented granulocyte migration and survival 15.  

In murine research, the role of SAEs as inducer and modifier of disease has been 

demonstrated in models of airway disease 16,17, allergic asthma 18, atopic dermatitis 19 and 

food allergy 20. These findings highlight the important pathological consequences of SAE 
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exposure, as these superantigens not only cause massive T-cell stimulation, but also lead to 

activation of B-cells and other pro-inflammatory cells like neutrophils, eosinophils, 

macrophages and mast cells 21. 

To date, the exact pathomechanisms of COPD are not yet elucidated. Cigarette smoking is a 

primary risk factor for the development of COPD, but only 20% of smokers actually develop 

the disease, suggesting that genetic predisposition plays a role 22. However, understanding 

the impact of toxin-producing bacteria on cigarette-smoke induced inflammation might 

provide novel insights into the pathogenesis of smoking-related disease such as COPD. 

Therefore, we investigated the effects of concomitant Staphylococcus aureus Enterotoxin B 

(SEB) application on a well established mouse model of cigarette-smoke (CS) induced 

inflammation 23. We evaluated inflammatory cells and their mediators in bronchoalveolar 

lavage (BAL) fluid and lung tissue, looked at systemic effects by measuring serum 

immunoglobulins, and evaluated goblet cell hyperplasia and lymphoid neogenesis. 
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3. Methods 

 

Experimental protocol 

Male C57BL/6 mice (n=8), 6–8 weeks old were purchased from Charles River Laboratories 

(Brussels, Belgium). Mice were exposed to the tobacco smoke of five cigarettes (Reference 

Cigarette 2R4F without filter, University of Kentucky, Lexington, KY, USA) four times per day 

with 30 min smoke-free intervals 24. The animals were exposed to mainstream cigarette 

smoke (CS) by whole body exposure, 5 days per week for 4 weeks. Control groups (8 age-

matched male C57BL/6 mice) were exposed to air. Starting from day 14 of the CS exposure, 

mice received concomitant endonasal application of SEB (50 μL – 10 μg/mL - Sigma-Aldrich, 

LPS content below detection limit) or Saline, on alternate days. This dose was chosen based 

on Hellings et al. 18.  For the application, mice were slightly anaesthetized with isoflurane, 

and six applications were performed as depicted in Figure 1. All experimental procedures 

were approved by the local ethical committee for animal experiments (Faculty of Medicine 

and Health Sciences, Ghent University). The results section contains data from one 

representative experiment out of three independent experiments. 

 

Figure 1: Experimental protocol. Male C57BL/6 mice (n = 8) were exposed to cigarette smoke(CS) of five 
cigarettes, four times per day with 30 min smoke-free intervals. Controls were exposed to air. Starting from day 
14 of the CS exposure, mice received concomitant endonasal application of SEB (50 μL - 10 μg/mL) or saline, on 
alternate days. 
 

Bronchoalveolar lavage and cytospins 

Twenty-four hours after the last cigarette smoke (CS) exposure and endonasal application, 

mice were sacrificed by a lethal dose of pentobarbital (Sanofi-Synthelabo). A cannula was 

inserted in the trachea, and BAL was performed by instillation of 3 x 300 μl of HBSS 

supplemented with BSA for cytokine measurements. Three additional instillations with 1 ml 

of HBSS plus EDTA were performed to achieve maximal recovery of BAL cells. A total cell 

count was performed in a Bürker chamber. Approximately fifty thousand BAL cells were 
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processed for cytospins and were stained with May-Grünwald-Giemsa for differential cell 

counting. The remaining cells were used for FACS analysis. 

 

Preparation of lung single-cell suspensions 

Blood was collected via retro-orbital bleeding. Then, the pulmonary and systemic circulation 

was rinsed to remove contaminating blood cells. Lungs were taken and digested as described 

previously 24. Briefly, minced lung pieces were incubated with 1 mg/ml collagenase and 20 

μg/ml DNase I for 45 min at 37°C. Red blood cells were lysed using ammonium chloride 

buffer. Finally, cell suspensions were filtered through a 50-μm nylon mesh to remove 

undigested organ fragments. 

 

Flow cytometry 

All staining procedures were conducted in calcium- and magnesium-free PBS containing 10 

mM EDTA, 1% BSA (Dade Behring), and 0.1% sodium azide. Cells were preincubated with 

anti-CD16/CD32 (2.4G2) to block Fc receptors. Antibodies used to identify mouse DC 

populations were anti-CD11c-allophycocyanin (APC; HL3) and anti-I-Ab-phycoerythrin (PE; 

AF6-120.1). The following mAbs were used to stain mouse T-cell subpopulations: anti-CD4-

fluorescein isothiocyanate (FITC; GK1.5), anti-CD8-FITC (53-6.7), anti-CD3-APC (145-2C11) 

and anti-CD69-PE (H1.2F3). To identify granulocytes, anti-Gr-1-PE (RB6-8C5) and anti-CD11c-

APC (HL3) were used. As a last step before analysis, cells were incubated with 7-

aminoactinomycin D (or viaprobe; BD Pharmingen) for dead cell exclusion. All labeling 

reactions were performed on ice in FACS-EDTA buffer. Flow cytometry data acquisition was 

performed on a FACScaliburTM running CellQuestTM software (BD Biosciences, San Jose, CA, 

USA).  

 

Measurement of Immunoglobulins 

Retro-orbital blood was drawn for measurement of total IgE, IgG, IgM and IgA with ELISA. 

Commercially available ELISA kits were used to determine serum and BAL titers of IgG 

(ZeptoMetrix, Buffalo, NY, USA), IgM (ZeptoMetrix, Buffalo, NY, USA) and IgA (Alpha 

Diagnostic International, San Antonio, TX, USA).  For the measurement of total IgE, a two-

side in-house sandwich ELISA was used, with two monoclonal rat anti-mouse IgE antibodies 

reacting with different epitopes on the epsilon heavy chain (H. Bazin, Experimental 
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Immunology Unit, UCL, Brussels, Belgium). The second antibody was biotinylated and 

detected colorimetrically after adding horseradish peroxidase-streptavidine conjugate.  

Absorbance values, read at 492 nm (Labsystems Multiscan RC, Labsystems b.v., Brussels, 

Belgium) were converted to concentrations in serum and BAL fluid by comparison with a 

standard curve obtained with mouse IgE of known concentration (H. Bazin). 

 

Goblet cell analysis 

Left lung was fixed in 4% paraformaldehyde and embedded in paraffin.  Transversal sections 

of 3 μm were stained with periodic acid-Schiff (PAS) to identify goblet cells. Quantitative 

measurements of goblet cells were performed in the airways with a perimeter of basement 

membrane (Pbm) ranging from 800 to 2000 μm. Results are expressed as the number of 

goblet cells per millimeter of basement membrane. 

 

Morphometric quantification of lymphoid neogenesis 

To evaluate the presence of lymphoid infiltrates in lung tissues, sections obtained from 

formalin-fixed, paraffin-embedded lung lobes were subjected to an immunohistological 

CD3/B220 double-staining as described previously 24. Infiltrates in the proximity of airways 

and blood vessels were counted. Accumulations of ≥50 cells were defined as lymphoid 

aggregates. Counts were normalized for the number of bronchovascular bundles per lung 

section. 

 

RT-PCR analysis 

Total lung RNA was extracted with the Rneasy Mini kit (Qiagen, Hilden, Germany). 

Expression of CXCL-13, CCL19, IL-13 and MIP-3α mRNA relative to HPRT mRNA 25, were 

performed with Assay-on-demand Gene Expression Products (Applied Biosystems, Foster 

City, CA, USA).  Real-time RT PCR for CCL21-leucine and CCL21-serine started from 25 ng of 

cDNA.  Primers and FAM/TAMRA probes were synthesized on demand (Sigma-Proligo).  

Primer/probe sequences and PCR conditions were performed as described previously 26,27. 

 

Protein measurement in BAL 

CXCL13 protein levels in BAL supernatant were determined using a commercially available 

ELISA (R&D Systems, Abingdon, UK). Cytometric Bead Array (BD Biosciences, San Jose, CA, 
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USA) was used to detect the cytokines KC, MCP-1, IL-17A and IFN-γ in the supernatant of BAL 

fluid. 

 

Statistical analysis 

Reported values are expressed as mean ± SEM. Statistical analysis was performed with SPSS 

software (version 18.0) using nonparametric tests. The different experimental groups were 

compared by a Kruskal-Wallis test for multiple comparisons. When a p-value ≤ 0.05 was 

obtained with the Kruskal-Wallis test, pairwise comparisons were made by means of a 

Mann-Whitney U test with Bonferroni corrections for multiple comparisons. A p-value p ≤ 

0.05 was considered significant. 
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4. Results 

 

4.1. SEB aggravates the CS-induced pulmonary inflammation 

To evaluate the effects of Staphylococcus aureus enterotoxin B (SEB) on cigarette smoke 

(CS)-induced pulmonary inflammation, C57Bl/6 mice were exposed to CS for 4 weeks, with a 

concomitant SEB exposure during the last 2 weeks (Figure 1). 

In BAL fluid, sole endonasal SEB application and sole CS-exposure resulted in increased 

numbers of total cells, alveolar macrophages, dendritic cells (DCs), lymphocytes and 

neutrophils, compared to air/saline exposed animals (Figure 2A-E). However, these increases 

in cell numbers were much more pronounced upon SEB application compared to CS-

exposure. Also a modest eosinophilic inflammation was observed in the SEB-exposed groups 

(Figure 2F). 

Figure 2: BAL fluid analysis. Total BAL cells and cell differentiation in BAL fluid of mice exposed to saline or SEB, 
combined with air or CS. A) Total BAL cells, B) macrophages, C) dendritic cells, D) lymphocytes, E) neutrophils, F) 
eosinophils. Results are expressed as mean ± SEM, n = 8 animals/group, *p < 0.05, **p < 0.01. 
 

 

Interestingly, the combination of CS exposure and SEB significantly increased BAL neutrophil 

numbers compared to sole CS or SEB exposure (Figure 2E). Also BAL lymphocyte numbers in 

smoke-exposed mice were increased upon SEB application (Figure 2D).  
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In lung single cell suspensions, SEB solely induced an increase in DCs, CD3+ T cells and 

macrophages, whereas CS exposure caused increased DCs and CD3+ T cells in lung tissue 

(Figure 3A,D,B). Interestingly, combined CS and SEB exposure caused a further increase in 

CD3+ T cells, and more specifically CD8+ T-cells, compared to CS or SEB alone (Figure 3D,F). 

Also DC, CD4+ T-cells and GR1+ cells tended to be higher in the combined CS/SEB group 

versus sole CS or SEB application (Figure 3A,E,C).  

Figure 3: Lung cell differentiation. Flow cytometric analysis of cells from lung digest: A) dendritic cells, B) 
macrophages, C) GR1+ cells, D) CD3+ T lymphocytes, E) CD4+ T lymphocytes and F) CD8+ T lymphocytes from 
mice exposed to saline or SEB, combined with air or CS. Results are expressed as mean ± SEM, n = 8 
animals/group, *p < 0.05. 
 

 

4.2. Increased IL-17A in BAL upon combined SEB and CS exposure 

As previously described [24], 4-wk CS-exposure clearly induced high levels of KC (mouse 

homolog for IL-8) and MCP-1 in BAL (Figure 4A,B). In contrast sole SEB application induced a 

modest increase in KC, and very low levels of IFN-γ and IL-17A (Figure 4A,D,C) . Whereas the 

CS-induced KC and MCP-1 levels in BAL were not affected by an additional SEB exposure, the 

combined CS and SEB exposure did induce IL-17A levels in BAL, compared to single CS or SEB 

exposure (Figure 4C). Also IFN-γ levels tended to be highest in the combined CS/SEB group 

(Figure 4D). mRNA levels of MIP-3α were increased after both CS or SEB exposure. Combined 

CS/SEB exposure did not cause a further MIP-3α increase (Figure 4E). 
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Figure 4: Protein measurements in BAL fluid. Protein levels of A) KC, B) MCP-1, C) IL-17A, D) IFN-γ in BAL fluid of 
mice exposed to saline or SEB, combined with air or CS, as measured with ELISA. E) mRNA expression of MIP-3α 
in total lung tissue, measured by RT-PCR. The results are expressed as ratio with hypoxanthine guanine 
phosphoribosyltransferase (HPRT) mRNA. Results are expressed as mean ± SEM, n = 8 animals/group, *p < 0.05, 
**p < 0.01. 
 

4.3. SEB induces IgA and IgM levels in BAL 

Systemic effects of either CS or SEB, or both were evaluated in serum, but no significant 

differences in total IgG, IgM, IgA or IgE levels were detected between the experimental 

groups. In BAL, CS exposure tended to increase IgA. Both IgA and IgM levels in BAL were 

significantly increased upon SEB-exposure (Figure 5). IgE in BAL was below the detection 

limit. 

 
Figure 5: BAL fluid immunoglobulin levels. A) Total IgA and B) total IgM in BAL fluid of mice exposed to saline 
or SEB, combined with air or CS. Results are expressed as mean ± SEM, n = 8 animals/group, *p < 0.05. 
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4.4. Combined CS/SEB exposure affects epithelial remodeling 

Epithelial remodeling was evaluated by counting the number of PAS-positive goblet cells per 

millimeter of basement membrane. A strong tendency towards increased numbers of goblet 

cells in the CS/SEB mice was observed, compared to all other conditions (Figure 6A,B). This 

finding correlated nicely with a significant increase in IL-13 mRNA expression in total lung in 

CS/SEB mice (Figure 6C). 

Figure 6: Epithelial remodeling. A) Histological evaluation of goblet cell hyperplasia on Periodic Acid Schiff 
(PAS) stained lung tissue sections of mice exposed to saline or SEB, combined with air or CS. B) Quantification of 
goblet cells. C) mRNA expression of IL-13, relative to a housekeeping gene (HPRT) was measured on total lung 
homogenates by RT-PCR. Results are expressed as mean ± SEM, n = 8 animals/group, *p < 0.05. 

 

4.5. Combined CS/SEB induces the formation of dense lymphoid aggregates in lung tissue 

Previously, our group has demonstrated increased lymphoid neogenesis after 6 months of 

CS-exposure 25. As earlier shown in the CS-model, subacute CS-exposure as such did not 

result in lymphoid neogenesis. Interestingly however, already after 4-wk CS-exposure, 

dense, organized lymphoid aggregates could be demonstrated in the combined CS/SEB 

group whereas air/SEB mice displayed mainly loose, non-organized lymphoid aggregates 

(Figure 7). 
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Figure 7: Evaluation of lymphoid aggregates in lung tissue. A) Photomicrographs of lymphoid aggregates in 
CD3/B220 immuno-stained lung tissue of mice exposed to saline or SEB, combined with air or CS (brown: CD3 
positive cells; blue: B220 positive cells). B) Quantification of loose and dense lymphoid aggregates located in the 
bronchovascular area. Results are expressed as mean, n = 8 animals/group, *p < 0.05, **p < 0.01. 
 

Since CXCL13, CCL19 and CCL21 are chemokines involved in the homeostatic trafficking of 

leukocytes, mainly lymphocytes, to the secondary and tertiary lymphoid tissues, their 

expression was also evaluated in this model. The increase in dense lymphoid aggregates in 

CS/SEB mice correlated nicely with significant increases in CXCL13 (protein levels in BAL fluid, 

mRNA levels in total lung) (Figure 8A,B) and CCL19 (mRNA levels) expression in CS/SEB mice 

compared to all other groups (Figure 8E). CCL21 mRNA levels (both isoforms CCL21-Ser and 

CCL21-Leu) decreased upon CS exposure, confirming previous findings of CCL21 

downregulation upon subacute CS exposure 26 and decreased even further in the CS/SEB 

group. Intriguingly, the CCL21 mRNA levels of both isoforms tended to increase upon sole 

SEB exposure (Figure 8C,D). 
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Figure 8: Chemokines involved in the homeostatic trafficking of leukocytes. Measurements of lymphoid 
chemokines in lung tissue and BAL fluid. mRNA expression of A) CXCL-13, C) CCL21-Ser, D) CCL21-Leu and E) CCL-
19 in total lung tissue of mice exposed to saline or SEB, combined with air or CS, measured by RT-PCR. The 
results are expressed relative to HPRT mRNA. B) Protein levels of CXCL-13 in BAL fluid as measured by ELISA. 
Results are expressed as mean ± SEM, n = 8 animals/group, *p < 0.05. 
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5. Discussion 

 

We hereby describe a novel mouse model of combined Staphylococcus aureus enterotoxin B 

(SEB) application and cigarette smoke exposure, which results in a significant aggravation of 

key features of cigarette smoke (CS)-induced pulmonary inflammation, such as neutrophils 

and CD8+ T cells in BAL and lung. Furthermore, levels of IL-17A in BAL were significantly 

increased upon concomitant SEB and CS exposure, compared to sole exposures of SEB or CS. 

In addition, tendencies of increased goblet cell hyperplasia, IL-13 mRNA expression and 

lymphoid neogenesis in smoke/SEB mice have been demonstrated, as well as increased 

expression of the relevant chemokines CXCL13 and CCL19. Altogether, these findings point 

to a possible disease-modifying role for SEB in CS-induced inflammation in this mouse model 

of subacute CS exposure. 

Increasing evidence from human and murine research suggests that SEB is able to aggravate 

underlying disease. Moreover, SEB itself is also able to induce inflammation, depending on 

the dosage and timing of the experimental protocol {892}{895}. Interestingly, these findings 

are not confined to SEB, as other staphylococcal superantigens demonstrate similar effects 

upon mucosal contact 28,29. In line with previously reported findings, in our model sole 

endonasal SEB application caused an increase in total BAL cell number, lymphocytes and 

neutrophils 16. Moreover, we could demonstrate raised numbers of macrophages and 

dendritic cells, a finding previously reported after S. aureus enterotoxin A exposure 28,29. In 

the latter studies however, the authors could not demonstrate increased eosinophils, which 

was the case in our model. The superantigen effect of SEB caused the expected lymphocyte 

accumulation in BAL, which appeared to be non-specific, as both CD4+ and CD8+ T cells were 

increased. These data stress the potency of staphylococcal superantigens of initiating a 

massive immune response. 

Concomitant CS/SEB exposure lead to a remarkable increase in neutrophil number, 

compared to CS or SEB exposure alone. Although the findings for neutrophils in lung 

(measured with granulocyte marker GR-1) were less convincing than in BAL, the combined 

CS/SEB group showed the highest number of GR-1+ cells. Interestingly, also the CD8+ T cell 

fraction in lung single cell suspensions, was significantly upregulated when smoke and SEB 

were combined. The potential clinical relevance of increased neutrophil and CD8+ T-cell 

numbers lays in the fact that neutrophilic inflammation in the airways in smokers correlates 
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with an accelerated decline in lung function 30, and increased T-cell numbers correlate with 

the amount of alveolar destruction and the severity of airflow obstruction 31.  

We confirm an increased MIP-3α expression in lungs after CS exposure leading to an 

accumulation of dendritic cells in this model 24. Interestingly, this increase in MIP-3α is also 

seen after SEB exposure, with raised DCs in BAL and airway parenchyma in these groups.  

As previously demonstrated in the subacute CS-model, we have observed an increase in 

levels of KC and MCP-1 after 4-wk CS exposure 24, explaining the accumulation of 

inflammatory cells in BAL and lung. Sole SEB application on the other hand resulted in raised 

levels of KC, IFN-γ and IL-17A, but not MCP-1. Interestingly, the combined exposure of 

smoke and SEB further increased the IL-17A levels, which might explain the exacerbated BAL 

neutrophilia in CS/SEB mice. Indeed, IL-17 is known to be important in neutrophil 

maturation, migration and function in the lung tissue and airways. Furthermore, IL-17 

induction of neutrophil activation and migration is important in defense against organisms 

infecting the lung 32. Interestingly, IL-17 can also induce eosinophilic accumulation, in 

particular circumstances 33.  

IL-17 is normally produced by CD4+ T cells, although it might also arise from CD8+ T cells and 

in some cases even from macrophages, neutrophils or eosinophils 34, as a necessary step in 

the normal immunity against bacterial infections in the airways. However, IL-17 has been 

linked to unfavorable outcome to infection, in particular in the presence of IFN-γ 35, resulting 

a high inflammatory pathology and tissue destruction. Increasing evidence dedicates a role 

to exaggerated recruitment and activation of neutrophils in the clinical course of airway 

diseases like COPD. Therefore, it is tempting to speculate on a role for SEB in the induction of 

IL-17 release, leading to the aggravation of cigarette smoke-induced inflammation, with 

increased number and activation of neutrophils, which causes amplification of tissue 

destruction and subsequent disease progression.  

In addition, we could observe already after 4-wks an increase in the number of dense 

lymphoid aggregates in CS/SEB mice, linked to increased levels of CXCL13 and CCL19, which 

are attractants for B- and T-cells respectively. Moreover, it has been described that the 

respective receptors for these chemokines – CXCR5 and CCR7 – are also expressed on Th17 

cells migrating into inflamed tissue 36, indicating a potential contribution of IL17-producing 

Th17 cells in this model of early COPD. The finding that lymphoid aggregates and the 

chemokines responsible for their neogenesis and organization 25 are already upregulated 
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after 4-wk CS/SEB exposure, stresses the clinical relevance of this novel model of combined 

CS and enterotoxin exposure. 

Staphylococcal superantigens are able to cause massive polyclonal T and B cell proliferation. 

Upon local application, as is done in this model, this leads to the mucosal synthesis of 

immunoglobulins, explaining the observed increase in BAL IgA and IgM. In humans, it is 

thought that continuous microbial stimulation leads to B cell turnover and plasma cell 

formation in nasal polyp disease, leading to an overproduction of immunoglobulins 37.  

In this mouse model of early stage COPD with goblet cell hyperplasia and increased number 

of lymphoid follicles, endonasal SEB application has resulted in augmented CS-induced lower 

airway inflammation. CS and subsequent bacterial colonization are, amongst others, factors 

believed to determine both progression of COPD, as well as the frequency and severity of 

COPD exacerbations 38. Therefore, mouse models of CS and bacterial co-exposure have been 

used in the past, mainly using Haemophilus influenza 39.  Bacterial colonization and infection 

is rare in lower airways, but not in upper airways. Local carriage of enterotoxin-producing S. 

aureus in the nasal cavity is common, although multiple sites can be colonized (e.g. skin, 

pharynx and perineum) 40. These toxins, like toxic shock syndrome toxin-1 (TSST-1), are 

known superantigens causing systemic diseases like food poisoning and toxic shock 

syndrome 4. In nasal polyp disease, these toxins are believed to drive the local 

immunoglobulin production in response to enterotoxin-producing S. aureus. 

The use of a single toxin instead of S. aureus in this model is both a strength and a limitation, 

since it simplifies the interpretation on one hand, but is not the real life situation on the 

other hand. Another limitation is that we cannot rule out endotoxin related effects in our 

model, although the LPS content of our SEB was below detection limit. Also the potential 

differences between our mouse model and the human situation concerning exposure to 

bacterial toxins and its effects on the balance of cytokines and inflammation is a limitation of 

the study. In addition, SEB on itself has resulted in pronounced inflammation in BAL and 

lungs, as it is a known superantigen. Finally, another possible limitation of this model is the 

short term (4-wk) CS exposure, whereas COPD is a chronic disease. Despite these limitations, 

altogether our findings indicate the importance of bacterial toxins present in the upper 

airways, affecting lower airway inflammation.  
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6. Conclusion 

 

The possible disease-modifying role for SAEs in COPD that has been described in humans 14, 

combined with our findings stress the potential role of airway colonizing and toxin-producing 

Staphylococcus aureus, in the pathophysiology of COPD 3.   
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Abstract 

 

The pulmonary innate immune system has evolved over millions of years to provide swift 

detection of inhaled microbial agents and trigger well-balanced protective responses. Much 

more recent on the evolutionary scale is human activity, which has resulted in the release of 

a new class of potentially harmful, non-microbial compounds into the air. These xenobiotics 

include combustion by-products such as reactive oxygen species and polycyclic aromatic 

hydrocarbons. This review will summarize evidence showing how airborne xenobiotics can 

engage pulmonary innate immunity components at many levels. We will focus on potential 

effects of xenobiotics on airway dendritic cells, as these constitute key innate immune 

sensors in the lung, with the unique ability to initiate adaptive immunity. We propose that 

the aberrant processing of inhaled xenobiotics by an innate immune system that is now 

evolutionarily maladapted underlies the increase in chronic inflammatory lung diseases in 

modern times. 
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Ancient meets new: pulmonary innate immunity and the rise of anthropogenic airborne 

compounds 

 

The innate immune system of the lung is one of the most critical homeostatic systems in our 

body. Life-threatening damage to the delicate gas-exchange structures can either occur by a 

failure to rapidly detect and clear inhaled airborne pathogens, or can result from an 

unbridled inflammatory response. Pulmonary innate immune defenses consist of several 

interacting components 1. The integrity of the epithelial layer, combined with the 

mucociliary transport form a first mechanical barrier in the conductive airways. Surfactant 

proteins, synthesized by the epithelium of the deeper alveolar zones, bear structural analogy 

to serum complement and constitute an additional immediate defense mechanism 2. 

Phagocytic cells such as macrophages and neutrophils complete the picture by neutralizing 

persistent inhaled pathogens. Invariant NK-T-cells and dendritic cells are also important 

innate immune sensors of the lung, with the latter being unique in their ability to initiate 

primary adaptive immune responses. Both structural cells (epithelium) and leukocyte 

components of the pulmonary innate immune system are equipped with pathogen 

recognition receptors (PRRs), i.e. Toll-like receptors (TLRs), NOD-like receptors (NLRs) and 

RIG-like receptors (RLRs) and provide immediate sensing of pathogen-associated molecular 

patterns (PAMPs) from inhaled bacteria, viruses or fungi 3. 

It can be assumed that the pulmonary innate immune system had to co-evolve with the 

development of lungs in the first terrestrial vertebrates, i.e. during the Devonian era some 

350 million years ago. The explosive colonization of the land by a myriad of organisms that 

charactarized that period must have brought a constant selection pressure on the very first 

airway innate defense mechanisms. This would have forced a repertoire diversification of 

pathogen recognition receptors, which were in part structural variations on a theme that 

also evolved in land-based arthropods (e.g. Toll-molecules in insects). Seen in this time-scale, 

human evolution is an extremely recent event. Since prehistoric times, and boosted by the 

first industrial revolution, human activity has resulted in the ever increasing release of 

airborne products largely derived from the combustion of biomasses and fossil fuels. 

Inhalational exposure to carbonaceous fine particles such as diesel exhaust particles (DEPs), 

as well as to a broad array of volatile molecules such as carbon monoxide, nitrogen oxides, 

sulfur dioxides and the potentially carcinogenic polycyclic aromatic hydrocarbons (PAHs) 4 
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has increased proportionally with the growth of human communities (Table 1). Even higher 

levels of exposure to combustion products have been reached since the widespread use of 

tobacco. 

The purpose of this review is to examine how the immune system of the lung reacts to these 

evolutionary recent anthropogenic stimuli. Among the different cellular actors of pulmonary 

innate immunity, we will particularly focus on the network of airway dendritic cells, given 

their unique role as both innate immune sensors and controllers of adaptive immune 

responses. 

 Table 1: Overview of the major primary and secondary air pollutants and their natural vs anthropogenic sources.  
Primary pollutants constitute direct emissions, whereas secondary pollutants are formed as a result of primary 
pollutants undergoing chemical reactions. An important example of a secondary pollutant is ground level ozone, 
one of the pollutants that make up “photochemical” smog and a rich source of reactive oxygen species. 
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Airway dendritic cells: specialized immune sensors at the forefront of the lung-air interface 

 

Dendritic cells (DCs) are professional antigen presenting cells (APCs) capable of priming and 

sustaining the expansion of naïve T cells.  They are present in tissues in close contact to the 

external environment, such as the skin (called Langerhans cells), and mucosal surfaces of  

upper and lower airways, gastro-intestinal and urogenital tract. In the lung, DCs are located 

as a network immediately above and beneath the basement membrane of conductive 

airways, as wells as within the interalveolar septa of the deeper lung parenchyma 5. In the 

steady state, airway DCs can project their dendrites in between epithelial cells without 

breaking the epithelial layer integrity and sample the epithelial lining fluid which is in direct 

contact with the inhaled air 6. DCs are equipped with specialized receptors (e.g. C-type lectin 

receptors, TLRs) for antigen capture and for sensing PAMPs and danger-associated molecular 

patterns (DAMPs), the latter being released as a result of tissue damage (whether as result 

of microbial invasion or not) 7. Inhalational exposure to PAMPs unveils the innate character 

of airway DC dynamics, as reflected by a fast and massive recruitment of these cells into the 

airways, being at least as rapid as the prototypical neutrophilic influx 8. Capture of inhaled 

antigen in the presence of PAMPs and/or DAMPs leads to DC activation, which initiates a 

series of events leading to the adaptive immune response: stimulated migration to the T-cell 

zones of draining thoracic lymph nodes, strong upregulation of processed antigen on surface 

major histocompatibility molecules (MHC) and upregulation of T-cell costimulatory 

molecules such as CD40 and B7-1, B7-2. An emerging paradigm is that the resulting T-cell 

polarization (T-helper 1, 2 or 17) is likely “programmed” as result of DC exposure to specific 

molecular patterns present at the time and place of antigen encounter in the periphery. This 

includes both direct stimulation of DCs by pathogen-derived factors, or indirect conditioning 

by innate factors released by surrounding cells. As an illustration of the latter, stimulation of 

TLR4 on airway epithelial cells results in the production of innate cytokines (including TSLP, 

GM-CSF and IL-33) and secondary activation of the DC network, which in this case is 

conditioned to induce a T-helper 2 polarized immune response 6.  

By contrast, aero-antigen sampling in the absence of innate stimuli is followed by steady 

state airway DC migration and antigen presentation in the draining LN 9, resulting in the 

induction of regulatory T-cells and establishment of inhalational tolerance 10. 
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With these concepts in mind, the question arises whether airborne xenobiotics can act 

directly as innate stimuli on airway dendritic cells, and if so, how this could affect the 

outcome of pulmonary immune responses. In the next sections, we will highlight the effects 

of two main active components in  inhaled xenobiotics on DC biology: reactive oxygen 

species (ROS) and polycyclic aromatic hydrocarbons (PAHs). It should be stressed that 

insights into these mechanisms have mostly been derived from in vitro models. Hence, 

extrapolation to in vivo situations must be made with caution: in a more realistic tissue or 

whole organism context, effects on DCs can also be indirect, as mentioned earlier. Co-culture 

models can provide additional useful information, as shown in a study involving dendritic 

cells incubated with bronchial epithelial cells. In this system, addition of DEPs triggers, in an 

oxidant-dependent manner, epithelial release of TSLP which then activates DCs and induces 

Th2 polarization 11. In vivo animal studies aim to be more relevant to clinical observations, 

but are not without drawbacks either: animal exposure models such as inhalation of tobacco 

smoke or diesel exhaust particles involve multiple potential mediators acting simultaneously 

on several receptor systems on a broad range of cells, making it difficult to clearly delineate 

relevant pathogenetic molecular mechanisms. For instance, both diesel exhaust particles 

and tobacco smoke are complex vectors for ROS, PAHs and a myriad of other bioactive 

compounds. Moreover, DEPs and tobacco smoke are often administered to animals in ways 

that do not reflect real-world situations, i.e. use of excessive doses, and/or instillation of 

soluble extracts rather than inhalation of airborne forms 12. 

 

How oxidative stress can affect pulmonary dendritic cells 

 

Reactive oxygen species are now recognized as important elements in the pathogenesis of 

several inflammatory disorders. ROS, which include oxygen ions, free radicals and peroxides, 

are highly unstable molecules with unpaired electrons, capable of initiating oxidation of 

cellular components. Endogenous ROS are generated by biochemical redox reactions of the 

natural cell metabolism including mitochondrial respiration or the oxidative burst of 

phagocytic cells, whereas exposure to air pollutants is the main source of exogenous ROS 13. 

Carbonacous fine particulate matter (including diesel exhaust particles), gases such as ozone, 

nitrogen dioxide and sulphur dioxide are all potential sources of ROS-generation at the level 

of airway surfaces. Not surprisingly, the lung has evolved elaborate anti-oxidant mechanisms 
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to limit damage caused by ROS. ROS can affect cells at multiple levels. ROS generation in 

close proximity to the cell membrane oxidizes membrane phospholipids, resulting in the 

formation of highly reactive aldehydes such as acrolein, 4-hydroxy-2-nonenal (4-HNE) and 

related 4-hydroxy-2,3-alkenals (HAKs) 14 (Figure 1). HNE and HAKs possess high affinity 

towards specific amino-acid residues of intracellular proteins involved in several aspects of 

cell signalling, chromatin remodelling and gene transcription. 4-HNE for instance, is capable 

of inducing adenylate cyclase activation, increase cAMP levels and thus affect cellular 

function by activating cAMP-dependent protein kinases (PKAs) 15. Reactive aldehydes can 

form stable adducts with JNK1/2 leading to subsequent activation of the transcription factor 

activator protein 1 (AP-1) and suggesting a possible role for 4-HNE in the modulation of cell 

proliferation and differentiation 16.  Interestingly, 4-HNE and HAKs both possess chemotactic 

activity towards neutrophils and monocytes, an important aspect of innate immunity 17. 

Isoprostanes are alternative by-products of membrane lipid oxidation, which are further 

processed into bioactive molecules, such as 1-palmitoyl-2-(5)oxovaleroyl-sn-glycero-3-

phosphorylcholine (POVPC), 1-palmitoyl-2-epoxyiso-prostane-sn-glycero-3-phosphorylcho-

line (PGPC) and (1-palmitoyl-2-epoxyisoprostane-sn-glycero-3-phosphorylcholine (PEIPC). 

These molecules possess innate pro-inflammatory effects as they can activate monocyte and 

neutrophil adhesion to the endothelium and increase their cytokine release 18. 

Protein nitration is another product of ROS-induced tissue damage. A reaction between NO 

en O2
- radical results in the formation of peroxynitrite anions (ONOO-).  These are highly 

reactive radicals, able to nitrosylate tyrosine residues to produce the stable product 

nitrotyrosine. Tyrosine nitration affects the function of important intracellular proteins such 

as NFkB 19, MAPK 20 and HDACs 21.  In addition, oxidation of cystein residues in the DNA 

binding domain of so-called redox sensitive transcription factors (NFkB, AP-1) can have 

profound effects on inflammatory gene expression and cell differentiation 22. An important 

redox-sensitive protein is Nuclear erythroid 2 p45-related factor 2 (Nrf2). Oxidative stress 

interferes with the default cytoplasmic anchoring of Nrf2 to the cytoskeleton-associated 

protein Keap1. Thus freed, Nrf2 translocates to the nucleus and activates transcription of 

several genes which have been shown to have anti-oxidant and anti-inflammatory activity in 

the lung 23. Also, in homeostatic conditions Nrf2 activity is low as a consequence of a Keap1-

dependent proteosomal degradation 24. 
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Finally, ROS can also mediate the activation of the NALP3 inflammasome and trigger the 

secretion of the pro-inflammatory cytokine IL-1β, as was shown in a model of asbestos fiber 

inhalation 25. Like IL-1β, IL-18 is produced following cleavage of a pro-form by the NALP3-

activated caspase 1. Interestingly, Nrf2-deficient DCs challenged with ambient particulate 

matter show enhanced production of IL-18 compared to wildtype DCs 26, suggesting a 

possible interaction between inflammasome-dependent IL-18 generation and Nrf2 redox 

sensing mechanisms. 

Figure 1. Schematic overview on the cellular-molecular effects of reactive oxygen species, with a special 
emphasis on pathways that are relevant to DC biology, such activation of NFkB, ERK/MAPK and AP-1 signalling 
cascades. See main text for details. 
 
 

With that knowledge in mind, several groups have used in vitro systems to closely dissect 

the effects of ROS on key features of dendritic cell biology. Preynat-Seauve et al analyzed the 

effects of oxidative stress on antigen processing and T cell presentation and indicated that 

oxidative stress inhibits the capacity of APCs to process antigens and to initiate a primary T 

cell response 27. By contrast, a study by Kantengwa et al demonstrated a ROS-induced early 
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maturation of human monocyte-derived DCs, characterized by a clear up-regulation of co-

stimulatory molecules (CD80, CD83 and CD86) and a decrease in endocytic activity 28. 

Likewise, it was shown that exposure of DCs to H2O2 induces up-regulation MHC II and 

costimulatory molecules (CD40, B7-2). Accordingly, H2O2 conditioned DCs were more 

efficient in promoting T cell proliferation than non-treated DCs 29.  These findings link ROS 

production and subsequent tissue damage to the innate activation of DCs and the initiation 

of adaptive immune responses. The involvement of oxidative stress mechanisms in DC 

activation and cytokine secretion includes a significant increase in protein oxidation, 

measured by the formation of carbonyl radicals, and triggers p38 and extracellular signal-

regulated mitogen-activated protein kinase (ERK/MAPK), resulting in the upregulation of 

CD40 30. Thus, MAPK, which has been described earlier as an important mediator of DC 

maturation following innate immune stimuli 31, appears to be an important target of ROS 

attack in itself. The exquisite sensitivity of DCs to oxidative influences is further illustrated by 

a study showing how treatment with anti-oxidants can virtually paralyze the NFkB, MAPK, 

and PKC response following innate inflammatory stimuli such as LPS or IL-1β. Interestingly, 

this led to the preferential induction of regulatory T-cells by the DCs 32. In the same line, 

Vassallo and coworkers showed that the high production of the neutrophil chemoattractant 

CXCL8 by in vitro tobacco smoke-conditioned DCs and ex vivo DCs isolated from tobacco 

smoke-exposed mice can be suppressed by the use of the antioxidant N-acetyl-cysteine 

(NAC) 33.  In contrast to these observations, Kroening et al demonstrated that activation of 

ERK-dependent pathways in DCs by oxidative stress from soluble cigarette smoke 

components, potently inhibits the production of IL-12 and IL-23 by mature DCs 34. 

Further reinforcing the notion that ROS may promote DC-dependent pro-allergic responses, 

Williams et al showed exacerbated DC maturation, inflammatory cytokine secretion and 

Th2-polarization in Nrf2-deficient dendritic cells 26 exposed to particulate matter-associated 

ROS. This was consistent with a study by the same group showing that Nrf2-deficient mice 

develop more severe features of allergic airway inflammation in an ovalbumin 

sensitization/challenge model than wildtype controls 35.  

The contrasting results of ROS and DC response investigations are an unevitable 

consequence of the reductionist nature of the experimental models and reflect the complex 

nature of oxidative stress effects on living cells. ROS-sensitive epigenetic modulation of gene 

expression adds another layer of complexity to the impact of oxidative stress on DCs. An 
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important element of epigenetic regulation is post-translational modification of histones by 

histone acetylases (HATs) and deacetylases (HDACs), whereby histone deacetylation results 

in compact winding of chromatin, obstructing access to transcription factors and suppressing 

gene transcription 36. As mentioned earlier, HDACs are a target of ROS attack by means of 

lipid peroxidation products or tyrosine residue nitrosylation. ROS can inactivate certain 

histone deacetylases (HDAC-2, -5 and -8) to promote the expression of pro-inflammatory 

genes in a number of pulmonary cells 37. Interestingly, HDACs are increasingly recognized as 

important regulators of innate immune responses and of DC function in particular, as 

illustrated by several studies. For instance, pharmacological HDAC inhibition (by the 

synthetic compound LAQ824) can alter TLR-4 dependent activation of macrophages and DCs 

and suppress Th1 but not Th2-cell activation and migration 38. In a different study, it was 

shown that HDAC inhibition decreases TLR- mediated activation of proinflammatory gene 

expression, due to impaired transcription factor recruitment 39. HDAC inhibition also changes 

DC differentiation by affecting the expression of costimulatory and adhesional molecules. 

The HDAC inhibitor butyrate inhibits the expression of CD1 molecules, but not CD83, CD86 

and MHCII molecules and butyrate-treated immature DCs showed lower production of IL12 

and IL-6 40. The observed defects in DC function after HDAC inhibition seem to rely on 

impaired nuclear translocation of NFκB, IRF-3 and IRF-8 41. Thus, ROS-induced defects in 

HDAC activity could have profound effects on normal innate responses of pulmonary DC, just 

as it does on other cells in the lung. 

Recently, an intriguing report was published pointing to a fundamental role of Toll-like 

receptors as alternative sensors for exogenous oxidants in the lung. The study by Paul-Clarck 

et al clearly identified TLR2, but not TLR4, as an important receptor mediating the 

production of CXCL8 after exposure to soluble oxidants 42. This may shed a new light on the 

finding by our group that tobacco smoke-induced airway inflammation, pulmonary DC 

recruitment and DC activation occur in a TLR4-dependent fashion 43.  In an in vivo mouse 

model of tobacco smoke inhalation, we observed a marked upregulation of MHC II and the 

costimulatory molecules CD40 and B7-2 on airway DCs, and this effect was profoundly 

impaired in TLR4-deficient mice. In vivo studies from a different group have raised doubts 

whether the TLR4-dependent effects of tobacco smoke are due to the well-documented 

presence of endotoxin 44. Consequently, the link between ROS-exposure and TLR-signalling 

may offer an attractive alternative explanation. 
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Polycyclic aromatic hydrocarbons as a separate class of innate stimuli for dendritic cells 

 

Airborne PAHs are mainly byproducts of industrial activity as well as domestic combustion 

processes such as woodfire heating, tobacco smoking and cooking. Because PAHs are highly 

resistant to metabolic breakdown, they tend to accumulate in the body, hence further 

extending exposure time and increasing the risk for a broad range of adverse health effects 

including carcinogenesis, immunotoxicity and endocrine dysregulation. The toxic effects of 

PAHs, among which dioxin-like compounds, are mediated by the aryl hydrocarbon receptor 

(AhR) 45. This is a ligand-dependent basic helix-loop-helix transcription factor involved in the 

regulation of xenobiotic metabolism and detoxification. The evolutionary highly conserved 

structure of the AhR suggests interactions with endogenous ligands. This is illustrated by 

functions which are unrelated to detoxification of modern environmental xenobiotics 46, 

including vascular development, regulation of circadian rhythm and modulation of immune 

responses, as discussed below. In the non-activated form, the AhR is a soluble cytosolic 

protein, forming a complex with chaperone proteins hsp90 (heat shock protein 90) and an 

immunophilin-like protein called XAP2 (Figure 2). Both chaperone proteins bind to the AhR 

nuclear localization sequence (NLS), preventing the inappropriate trafficking of the receptor 

into the nucleus. Upon ligand activation, the XAP2 protein disocciates from the AhR, 

resulting in the exposure of NLS and subsequent translocation to the nucleus. Once in the 

nucleus, the AhR dissociates from hsp90 and dimerizes with ARNT (AhR nuclear translocator) 

to reconstitute an active transcription factor. The AhR-ARNT complex binds to specific DNA 

response elements known as dioxin-responsive elements (DREs) or xenobiotic responsive 

elements (XREs). DREs are present in many promotors and drive transcription of a wide 

range of genes, not only for xenobiotic metabolism (i.e. induction of cytochrome family of 

proteins), but also genes involved in the regulation of cell differentiation, proliferation and 

activation 47.  

There is growing evidence pointing to an active role of the AhR signaling pathway in immune 

responses 46. Engagement of the AhR leads to diverse, sometimes opposing immunological 

effects depending on ligand binding characteristics as well as the broader cellular and 

molecular environmental context. Exposure to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a 

prototype of PAH with high affinity to the AhR, can lead to both pro-inflammatory effects 

with the induction of TNF-α, IL-1β, COX-2 and IL-8 48,49,50 or suppression of adaptive 
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immunity. TCDD-dependent activation of the AhR can induce suppression of B and T cell-

dependent responses and result in increased susceptibility to infection 51. A series of in vivo 

studies have highlighted the complex effects of AhR-triggering in the setting of influenza 

infection, a good model to illustrate the shift from innate immunity to adaptive response in 

the lung (reviewed in 52). The innate response characterized by neutrophilia and interferon 

production is amplified in TCDD-treated, infected mice, while the clonal expansion of virus-

specific CD8 T-cells is profoundly suppressed. Interestingly, the latter phenomenon appears 

indirect, as CD8 T-cells from Ahr -/- animals are still prone to suppression when transferred 

into Ahr +/+ hosts 53. This suggests that the defect in adaptive immune response after AhR 

triggering occurs at the level of the accessory cell, i.e. most probably targeting the dendritic 

cell. Several in vitro studies have further highlighted the immunosuppressive effects of AhR 

ligands. Benzo(a)pyrene (BP) has been reported to impair antigen presentation by mouse 

macrophage and alters the T cell-macrophage interaction 54. Similarly, PAHs can impair 

differentiation of blood-derived monocytes into functional macrophages 55. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Hypothetical diagram illustrating possible effects of aryl hydrocarbon receptor signalling in DCs. A 
central element is the dual nature of interactions of AhR with components of the NFkB signalling cascade, the 
latter being essential for DC activation following innate stimuli and the acquisition of T-cell immunostimulatory 
power. Probably depending on the ligand, AhR engagement can engage different subunit of NFkB complexes 
and lead to both suppression or induction of inflammatory gene expression. 
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When it comes to dendritic cells specifically, direct effects of PAHs are similarly complex, 

often producing contradicting reports. Jux et al provided evidence for a physiological role of 

the AhR in Langerhans cells (LCs), the predominant DC population of the epidermis. They 

observed an impaired upregulation of costimulatory molecules in TCDD-stimulated, AhR-

deficient murine LCs compared to AhR-competent LCs, and consequently an impaired 

induction of contact hypersensitivity. Interestingly, the AhR was also necessary for the 

upregulation of Indoleamine-2,3-dioxygenase (IDO) expression in DCs. IDO enzymatic activity 

in DCs is known result in T-cell anergy or the generation of regulatory T-cells 56.  

Laupeze et al studied the effects of PAHs on the differentiation, maturation and biological 

function of human monocyte-derived DCs in vitro. Exposure of monocytes to BP during their 

development into DCs resulted in impaired upregulation of DC-specific differentiation and 

maturation markers such as CD1a, CD80 and CD40.  Moreover, DCs generated in the 

presence of BP displayed decreased endocytic activity and showed impaired IL-12 secretion.  

BP-exposed DCs poorly stimulated T cell proliferation compared to their untreated 

counterparts 57. In a recent report, Platzer et al further highlight the suppressive effects of 

AhR triggering on DC biology. Using the synthetic AhR ligand VAF347, they reveal the 

involvement of the AhR in suppressing commitment of human myeloid progenitors towards 

the monocyte/DC lineage 58. In a different report, VAF347 also appears capable of inhibiting 

the upregulation of MHCII and B7-2 on DCs 59. In the same line, Hwang (and Lee) et al. 

showed that the AhR ligand benzopyrene inhibits the growth and functional differentiation 

of mouse bone marrow-derived DCs. BP induced little alterations in CD11c, MHCII and CD86 

surface expression, but clearly impaired production of IL-12, IL-10 and TNF-α as well as 

allogeneic T cell stimulating ability. This was accompanied by a reduced expression of the 

RelB NFkB protein family member, which is known to be pivotal for DC differentiation and 

function 60. Even though BP and the dioxin-like TCDD are both ligands of the AhR, their 

effects on the development and function of DCs can be divergent. This is illustrated by a 

study in which TCDD-treated DCs expressed significantly higher levels of DC differentiation 

markers such as MHCII and the co-stimulatory molecule CD86, impaired IL-10 and intact IL-

12 production. Accordingly, T-cell stimulatory capacity was increased in TCDD-treated 

compared to control DCs 61. Also Vogel et al showed increased maturation of human 

monocyte-derived DCs after AhR activation by TCDD, as manifested by characteristic 

morphological changes and upregulation of costimulatory molecules. Again, AhR triggering 
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by TCDD in DCs led to induction of IDO expression and enzymatic activity. A similar effect of 

AhR-triggering was observed in vivo, with increased IDO expression in lung and spleen of 

TCDD-treated mice, resulting in the induction of FoxP3 transcripts (pointing to an increased 

differentiation of regulatory T-cells)  62. 

Insights into the divergent effects of PAHs on DCs came with the discovery that the AhR is 

involved in a complex cross-talk with several members of the NFkB pathway. Specifically, 

AhR can dimerize with RelA and antagonize the canonical NFkB pathway, leading to 

suppression of inflammatory gene expression. At the same time, the AhR can form a 

complex with RelB and in some cases enhance transcription of inflammatory cytokines and 

chemokines 63, or presumably affect functional features of DCs which rely on non-canonical 

NFkB activation (eg antigen cross-presentation) 64. Which downstream signalling pathway 

will be activated following binding of a specific AhR ligand will likely depend on concomitant 

innate stimuli, as well as the differentiation/maturation state of the DC target. 

 

From airborne xenobiotic exposure to pulmonary immunopathology: the dendritic cell link? 

 

Given their anatomical distribution, airway DCs constitute unevitable targets of inhaled 

xenobiotics. Because innate receptors of DCs have not evolved under selective pressure of 

anthropogenic compounds, it can be assumed that confrontation of airway DCs with these 

agents will initiate aberrant pulmonary immune responses, or modulate the outcome of 

classical anti-microbial defenses. This working hypothesis may shed new light on the 

pathogenesis of several chronic inflammatory pulmonary diseases. A good illustration is the 

implication of tobacco smoke (TS) exposure in the development of asthma. Tobacco smoke 

inhalation activates multiple mechanisms that can potentially program DCs to polarize pro-

allergic T-helper 2 type responses towards co-inhaled antigen. TS is a known vector for 

endotoxin-like compounds, the latter having been implicated in the induction of Th2 

responses 65. Despite this fact, our group has recently shown unimpaired development TS-

induced allergic sensitization in TLR4 and Myd88 gene deficient mice (Robays et al, in press). 

This suggests alternative Th2-promoting effects of TS on DCs, such as ROS-induced activation 

of the MAPK/ERK pathway 34, or the secondary release of Th2-promoting innate factors such 

as TSLP, ATP or IL-33 66. Another illustration of pulmonary immunopathology with a strong 

link to human activity is COPD, a chronic pulmonary disease associated with the inhalation of 
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tobacco smoke and presumably biomass combustion products in general. Among the many 

xenobiotics present in smoke, the dual effects of PAHs as both promoting chronic 

inflammation, while simultaneously suppressing adaptive immunity, may contribute to the 

relentless progression of pulmonary damage, coexisting with the enhanced sensitivity to 

infection that charactizes COPD. This is reflected in the specific changes in airway DC 

populations observed in COPD patients, i.e. increased recruitment of airway epithelial DCs (a 

sign of innate pro-inflammatory response), which however display an immature phenotype 
67. COPD is clearly a disease of aberrant immunostimulation in the lung and it is very likely 

that the reprogramming of pulmonary DCs by smoke-derived xenobiotics plays a central role 

in perpetuating the chronicity of the inflammation, even after smoking cessation. Epigenetic 

reprogramming of DCs is an interesting hypothesis to explain the hard-wiring of this aberrant 

response. In support of this, extensive studies have unveiled progressive reduction in HDAC 

activity in COPD bronchial biopsies, a phenomenon that was proportional to COPD severity. 

Specifically, HDAC activity was suppressed in alveolar macrophages from COPD-patients, 

resulting in enhanced and glucocorticoisteroid-resistant production of innate pro-

inflammatory cytokines 37. It is very likely that airway DCs are subject to similar epigenetic 

modulations, probably under influence of ROS, as detailed above. In contrast to the innate 

scavenger function of alveolar macrophages, the impact of these effects on DCs is more far-

reaching, as DC function can shift from innate immune sensor to initiator of adaptive 

immnunity, with the potential to instruct tolerance vs active immune response. Accordingly, 

reports have recently emerged suggesting the presence of an aberrant adaptive response in 

COPD, including reactivity against self-antigens within the lung tissue 68.  Provided the 

necessary stimuli are present, DCs are probably the only antigen-presenting cells powerfull 

enough to override this self-tolerance.  

Besides asthma and COPD, the lung is also the stage for other chronic, often debilitating 

immunopathologies such as interstitial pneumonitis/fibrosis, vasculitis (e.g. Churg-Strauss, 

Wegener disease) and granulomatous inflammation (e.g sarcoidosis). The etiology of these 

diseases is still obscure, and it remains to be examined whether airborne anthropogenic 

xenobiotics, by acting on pulmonary DCs, could provide the necessary spark to initiate an 

aberrant immune response in predisposed individuals. 
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Conclusion 

 

In summary, it appears increasingly evident that the pulmonary innate immune system is a 

critical target of airborne xenobiotics. The large amount of experimental data available 

reflects the complex nature of these man-made compounds in terms of triggering specific 

innate molecular responses. Diverging effects are observed depending on co-existing stimuli 

and the cellular and tissue context. Nevertheless, it is worth noting that classical pathogen-

associated molecules and human-made xenobiotics can use common sets of innate 

receptors such as TLRs and presumably inflammasome components. Even more intriguing is 

the way the aryl hydrocarbon receptor system and the cellular response to oxidative stress 

interconnect with immunological pathways. In this review, we provided evidence that 

molecular responses to xenobiotics can operate at the level of the dendritic cell. Given the 

extensive network of DCs in the airways, and the pivotal role of these cells in linking innate 

and adaptive immunity, we believe intensive preclinical and translational research in this 

field may produce unexpected insights in many pulmonary immunopathologies. 
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Over the last decades, the incidence of asthma and chronic obstructive pulmonary disease 

(COPD) has increased continuously, especially in the industrialized Western countries. 

Although genetic predisposition is a fundamental factor underlying both diseases, the 

observed increase in prevalence has occurred too rapidly to be explained by genetic 

variations alone, implicating a role for environmental factors 1.  

To unravel the impact of environmental insults on the induction, progression or aggravation 

of asthma and COPD, we moved towards a new generation of animal models, with combined 

exposures to natural and man-made environmental stimuli.  

 

In the first part of the thesis we focused on allergic asthma. Epidemiological studies have 

demonstrated that cigarette smoke (CS) exposure is a considerable risk factor in the 

development or aggravation of asthma, predominantly early in life 2. To better understand 

the impact of CS exposure on immunological responses towards allergens, Chapter 6.1, 6.2 

and 6.3 of the thesis focused on the role of CS as a risk factor for allergic sensitization and 

asthma development in mice.  

In Chapter 6.1 we studied the impact of CS inhalation on key aspects of airway dendritic cell 

(DC) biology. Airway DCs are generally accepted to drive mucosal sensitization towards 

inhaled aeroallergens 3. In vivo depletion of lung CD11c+ DCs abrogates Th2 sensitization in 

response to allergen exposure 4, whereas transfer of allergen-primed DCs into naïve mice 

induces Th2 immunity and features of asthma upon allergen rechallenge 5. Using the 

previously established mouse model of Moerloose et al. – in which CS breaks inhalation 

tolerance to aerosolized ovalbumin (OVA) 6 – we demonstrated increased recruitment and 

activation of airway DCs in mice concomitantly exposed to OVA and CS. Moreover, 

prolonged CS inhalation markedly amplified the DC-mediated transport of OVA to the 

draining lymph nodes, probably in response to CS-induced up-regulation of the homing 

receptor CCR7 on airway DCs 7. Although our data are consistent with previous results in CS-

exposed mice 7-10, some groups rather suggest impaired DC maturation and migration in 

response to CS inhalation 11,12. This discrepancy may be explained due to dose-dependent 

adjuvant or anti-inflammatory properties of CS 13,14 and differences in exposure protocol. To 

explain the mechanistic pathway through which CS affects DC biology and disrupts normal 

tolerogenic immunity against OVA, we hypothesized a role for the contaminating endotoxin 

(or LPS) content in CS 15. Eisenbarth et al. reported that low doses of endotoxin, in 
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combination with OVA, are sufficient to break inhalation tolerance in a TLR4-MyD88 

dependent way 16,17. Unexpectedly, we showed Th2-oriented immunity in both TLR4 

deficient mice and MyD88 knockout mice upon concomitant OVA/CS exposure, suggesting 

that other pathways are responsible for the enhanced sensitization towards OVA antigens.  

 

In contrast to the “surrogate” allergen OVA, most clinically relevant allergens (e.g. house 

dust mite (HDM), ragweed or animal dander) possess intrinsic proteolytic adjuvant activity, 

directly activating DCs or epithelial cells to break inhalation tolerance and promote Th2 

immunity 18. Biochemical and immunogenic differences between real-life allergens and OVA 

may have a profound impact on the nature of the allergen exposure and may even affect the 

mechanisms behind the elicited allergic response. Moreover, as the stimulatory effect of CS 

on asthma development probably results from a fine interplay between CS compounds, 

environmental allergens, and innate and adaptive immune cells, the use of real-life allergens 

(e.g. HDM) to obtain relevant mechanistic insights, is therefore crucial. 

 

In Chapter 6.2, we established a clinically relevant mouse model, using low doses of HDM as 

real-life allergen, together with CS as indoor pollutant. In conformity with epidemiological 

data, we provided biological proof that CS indeed favours HDM-driven asthma development, 

as illustrated by massive inflammatory cell recruitment, elevated Th2 cytokine production 

and increased airway hyperresponsiveness. In addition, we demonstrated that CS inhalation 

during the sensitization phase is sufficient to induce asthma development in mice. We found 

that only a few days of CS inhalation during the initial allergen contact already enhanced DC 

recruitment, activation and HDM-driven DC migration to the lymph nodes, supporting the 

local induction of HDM-specific Th2 immunity.  

From a medical point of view, these findings are of great clinical relevance. As allergic 

sensitization mainly occurs during early life, young children may become more vulnerable for 

future asthma development due to (short) CS inhalation. 

 

As HDM is a complex mixture of various proteolytic enzymes, together with a number of 

non-protein compounds (endotoxins, β-glucans, chitin, … ), these elements may act synergis-

tically, or at least in combination with CS constituents (LPS, aluminium, ...), to modulate the 

disease phenotype. In Chapter 6.3 we obtained preliminary mechanistic insights regarding 
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the role of CS during asthma development. HDM allergens have been reported to posses 

auto-adjuvant activity, in a protease dependent (e.g. Der p 1) 19 or independent 20 way and 

together with CS 21,22, these allergens may act synergistically to further decrease the 

epithelial barrier function and to increase transepithelial delivery to antigen-presenting cells. 

In our model of CS-induced facilitated early Th2 sensitization, we observed no significant 

difference in E-cadherin expression – a marker of epithelial integrity – between all 4 groups, 

although the individual values of the PBS/air control mice seemed to be higher. However, 

combined exposure to HDM and CS did result in elevated levels of the endogenous danger 

signal uric acid (UA) compared to HDM or CS alone. UA may act as a Th2 prone adjuvant 23 

and may be released upon tissue injury 24, oxidative stress 25 or alum 26, which is present a 

high concentrations in CS 27. Furthermore, UA may amplify the production of innate pro-Th2 

cytokines, such as IL-1β 23. In fact, acute HDM/CS exposure for 3 days induced additionally 

more IL-1β compared to control mice, suggesting a putative role for the IL-1β – IL1RI 

signalling pathway during facilitated allergic sensitization upon CS inhalation. Using IL1RI 

knockout mice, we confirmed the IL1RI pathway to be necessary to prime local Th2 

immunity in the draining lymph nodes. To our knowledge, only one study already 

demonstrated the role of the IL1RI signalling during allergic sensitization, however in the 

absence of any environmental pollutant 28.  

Moreover, many HDM components possess Toll-like receptor (TLR) agonist activity 29-31. 

HDM can induce the release of endogenous danger signals or pro-allergic cytokines from 

airway epithelial cells, in a TLR4-dependent way 23,28,29,32. Although the role of TLR4 in our 

combination model has not been investigated yet, prolonged HDM/CS exposure further 

increased UA and IL-1β, as well as IL-25 and IL-33, illustrating the immunostimulatory effect 

of CS on airway epithelial cells. Figure 14 summarizes our findings from the HDM/CS 

exposure model and illustrates potential mechanisms. 

 

Albeit our findings suggest a role for CS as an adjuvant during allergic sensitization and 

subsequent asthma development, additional experiments are needed to further unravel the 

mechanisms behind the facilitated allergic response. To further elucidate the role of the 

airway epithelium, we should focus on the expression profile of other tight junction and 

adherens junction molecules. Together with UA, the role of other danger molecules (e.g. 

ATP, hsp70, S100 proteins) and innate pro-allergic cytokines can be unravelled, using 
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Figure 14: Summary of the immunostimulatory effect of CS on house dust mite-driven allergic inflammation 
and an illustration of potential mechanisms (e.g. E-cadherin, uric acid, IL-1β – IL1RI pathway). 

Figure by Lanckacker EA 

degradation enzymes, neutralization antibodies or knockout mice. Moreover, it may be 

interesting to analyse the long-term effect of HDM/CS exposure on the induction of 

epithelial-to-mesenchymal (EMT) transition and the development of airway wall remodeling. 

Mast cells are key effector cells of allergic inflammation, located in close proximity to 

sensory nerves 33. Within this regard, the role of mast cells and their mediators, neurogenic 

inflammation and the involvement of transient receptor potential channels may be 

interesting to examine in HDM/CS exposed mice. Our model also offers the opportunity to 

investigate the role of epigenetic changes (miRNA expression 34, histone modifications and 

DNA-methylation 35), during CS-induced asthma development. As oxidative stress originating 

from HDM or CS, may compromise the protein folding capacity of the endoplasmic reticulum 

(ER) 36, it may be significant to unravel the role of ER stress during enhanced CS-induced 

HDM sensitization. Finally, it will be interesting to examine whether promising asthma 

genes, identified from genome wide association studies (GWAS) (e.g. ORMDL3 37, TLSP 38, 

PCDH1 39) are upregulated in our mouse model, as well as to examine their role in asthma 

development. Conversely, we need to check whether data obtained from mice can be 

confirmed in patients with allergic asthma. 

 

 

196



 

197 

In the second part of the thesis, we focused on environmental aggravating factors in the 

pathogenesis of smoking-related diseases, such as COPD. More specifically, in Chapter 6.4 

we investigated the disease-modifying role of bacterial superantigens. Staphylococcus 

aureus (S. aureus) has been identified as one of the main pathogenic bacteria, capable of 

producing a variety of bacterial toxins with superantigenic capacity. Although bacterial S. 

aureus is often associated with asymptomatic colonization of the respiratory tract, repeated 

CS exposure may compromise the mucosal barrier function, thus providing the opportunity 

for the pathogen to break through. Moreover, the discovery of specific IgE antibodies 

directed against Staphylococcus aureus (S. aureus) enterotoxins in patients with COPD 40, 

provides indications that these antigens may act as potential aggravating factors of COPD 

pathophysiology. In order to identify whether S. aureus superantigens may alter the 

pulmonary inflammatory response upon CS, we designed a novel mouse model of 

concomitant S. aureus enterotoxin B (SEB) and CS inhalation. Interestingly, simultaneous 

exposure to both stimuli resulted in a significant aggravation of hallmark features of CS-

induced pulmonary inflammation, such as a marked increase in CD8+ T lymphocytes and 

neutrophils, associated with the increased release of IL-17A, and not KC, as neutrophil-

attracting chemokine. Furthermore, combined SEB/CS exposure enhanced goblet cell 

hyperplasia, IL-13 mRNA expression and the formation of dense lymphoid aggregates in the 

lung, in an experimental protocol of 4 weeks. In COPD patients, the presence of pulmonary 

lymphoid follicles correlates with the progression and severity of the disease 41. Similarly, 

using the standard murine COPD model within our lab, lymphoid follicle formation occurs 

after a chronic CS exposure period for 24 weeks 42. The observed increase in lymphocytes 

and their organization into follicles after only 4 weeks of concomitant SEB/CS exposure, 

illustrates the disease-aggravating role of SEB in COPD pathology. SEB exposure also 

enhanced tissue-local production of IgM and protective mucosal IgA, which may offer local 

protection against the invading pathogens.  

As we postulated to design clinically relevant mouse models, using complex environmental 

stimuli, the use of SEB within our combination model, instead of S. aureus itself, may be 

considered as a weakness of the study. However, because of its proven relevance in other 

respiratory diseases, the use of SEB solely may be justified 43,44. Another limitation of the 

study may be the fact that SEB on itself already induced stimulatory effects, probably in a 

dose-dependent way. 

197



 

198 

Little is known about the mechanisms underlying the aggravating effect of SEB on immune 

activation and further research is needed to obtain mechanistic insights. Considering the 

stimulatory effect of SEB, it may be interesting to down-titrate the SEB dosage, in order to 

further emphasize the immunomodulatory effect of SEB in combination with CS-induced 

inflammation. It may be interesting to focus on the airway epithelium and to identify 

pathogen recognition receptors on epithelial cells, DCs or other innate and adaptive immune 

cells which may be activated upon SEB and CS constituents. Moreover, the role of danger 

molecules and innate cytokines in response to SEB/CS exposure deserves further attention. 

As the enhanced production of lymphoid chemokines CXCL13 and CCL19 upon CS exposure 

are lymphotoxin (LT)α1β2-LTβR dependent, the role of this pathway may be significant in our 

model 45. Finally, chronic SEB/CS exposure for 24 weeks may reveal additional information 

on the immunostimulatory effect of SEB on key aspects of COPD pathophysiology, such as 

emphysema or lung function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a general conclusion, preclinical mouse models may be very useful to provide biological 

mechanistic data, supporting the hypothesis that environmental factors may be responsible 

for the increased prevalence and aggravation of asthma and COPD. 

 

Figure 15: Summary of the disease-modifying role of S. aureus enterotoxin B on CS-induced  
pulmonary inflammation. Figure by Lanckacker EA 
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