66 research outputs found

    Neuroanatomical Assessment of the Integrin β3 Mouse Model Related to Autism and the Serotonin System Using High Resolution MRI

    Get PDF
    The integrinβ3 (ITGβ3) gene has been associated with both autism and the serotonin system. The purpose of this study was to examine the volumetric differences in the brain of an ITGβ3 homozygous knockout mouse model compared with a corresponding wild-type mouse using high resolution magnetic resonance imaging and detailed statistical analyses. The most striking difference found was an 11% reduction in total brain volume. Moreover, 32 different regions were found to have significantly different relative volumes (percentage total brain volume) in the ITGβ3 mouse. A number of interesting differences relevant to autism were discovered including a smaller corpus callosum volume and bilateral decreases in the hippocampus, striatum, and cerebellum. Relative volume increases were also found in the frontal and parieto-temporal lobes as well as in the amygdala. Particularly intriguing were the changes in the lateral wings of the dorsal raphe nuclei since that nucleus is so integral to the development of many different brain regions and the serotonin system in general

    Atrx Deletion in Neurons Leads to Sexually Dimorphic Dysregulation of miR-137 and Spatial Learning and Memory Deficits.

    Get PDF
    ATRX gene mutations have been identified in syndromic and non-syndromic intellectual disabilities in humans. ATRX is known to maintain genomic stability in neuroprogenitor cells, but its function in differentiated neurons and memory processes remains largely unresolved. Here, we show that the deletion of neuronal Atrx in mice leads to distinct hippocampal structural defects, fewer presynaptic vesicles, and an enlarged postsynaptic area at CA1 apical dendrite-axon junctions. We identify male-specific impairments in long-term contextual memory and in synaptic gene expression, linked to altered miR-137 levels. We show that ATRX directly binds to the miR-137 locus and that the enrichment of the suppressive histone mark H3K27me3 is significantly reduced upon the loss of ATRX. We conclude that the ablation of ATRX in excitatory forebrain neurons leads to sexually dimorphic effects on miR-137 expression and on spatial memory, identifying a potential therapeutic target for neurological defects caused by ATRX dysfunction

    Dosage-Dependent Phenotypes in Models of Human 16p11.2 Lesions Found in Autism

    Get PDF
    Recurrent copy number variations (CNVs) of human 16p11.2 have been associated with a variety of developmental/neurocognitive syndromes. In particular, deletion of 16p11.2 is found in patients with autism, developmental delay, and obesity. Patients with deletions or duplications have a wide range of clinical features, and siblings carrying the same deletion often have diverse symptoms. To study the consequence of 16p11.2 CNVs in a systematic manner, we used chromosome engineering to generate mice harboring deletion of the chromosomal region corresponding to 16p11.2, as well as mice harboring the reciprocal duplication. These 16p11.2 CNV models have dosage-dependent changes in gene expression, viability, brain architecture, and behavior. For each phenotype, the consequence of the deletion is more severe than that of the duplication. Of particular note is that half of the 16p11.2 deletion mice die postnatally; those that survive to adulthood are healthy and fertile, but have alterations in the hypothalamus and exhibit a “behavior trap” phenotype—a specific behavior characteristic of rodents with lateral hypothalamic and nigrostriatal lesions. These findings indicate that 16p11.2 CNVs cause brain and behavioral anomalies, providing insight into human neurodevelopmental disorders

    Effects of low-dose gestational tcdd exposure on behavior and on hippocampal neuron morphology and gene expression in mice

    Get PDF
    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans.publishedVersio

    Peripheral blood DNA methylation and neuroanatomical responses to HDACi treatment that rescues neurological deficits in a Kabuki syndrome mouse model

    Get PDF
    Publisher Copyright: © 2023, The Author(s). © 2023. The Author(s).Background: Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d +/βGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d +/βGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a “primary tissue” with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. Methods: Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. Results: We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. Conclusions: As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.Peer reviewe

    Distinct, dosage-sensitive requirements for the autism-associated factor CHD8 during cortical development

    Get PDF
    Background: CHD8 haploinsufficiency causes autism and macrocephaly with high penetrance in the human population. Chd8 heterozygous mice exhibit relatively subtle brain overgrowth and little gene expression changes in the embryonic neocortex. The purpose of this study was to generate new, sub-haploinsufficient Chd8 mouse models to allow us to identify and study the functions of CHD8 during embryonic cortical development. Methods: To examine the possibility that certain phenotypes may only appear at sub-heterozygous Chd8 levels in the mouse, we created an allelic series of Chd8-deficient mice to reduce CHD8 protein levels to approximately 35% (mild hypomorph), 10% (severe hypomorph) and 0% (neural-specific conditional knockout) of wildtype levels. We used RNA sequencing to compare transcriptional dysregulation, structural MRI and brain weight to investigate effects on brain size, and cell proliferation, differentiation and apoptosis markers in immunostaining assays to quantify changes in neural progenitor fate. Results: Mild Chd8 hypomorphs displayed significant postnatal lethality, with surviving animals exhibiting more pronounced brain hyperplasia than heterozygotes. Over 2000 genes were dysregulated in mild hypomorphs, including autism-associated neurodevelopmental and cell cycle genes. We identify increased proliferation of non-ventricular zone TBR2+ intermediate progenitors as one potential cause of brain hyperplasia in these mutants. Severe Chd8 hypomorphs displayed even greater transcriptional dysregulation, including evidence for p53 pathway upregulation. In contrast to mild hypomorphs, these mice displayed reduced brain size and increased apoptosis in the embryonic neocortex. Homozygous, conditional deletion of Chd8 in early neuronal progenitors resulted in pronounced brain hypoplasia, partly caused by p53 target gene derepression and apoptosis in the embryonic neocortex. Limitations Our findings identify an important role for the autism-associated factor CHD8 in controlling the proliferation of intermediate progenitors in the mouse neocortex. We propose that CHD8 has a similar function in human brain development, but studies on human cells are required to confirm this. Because many of our mouse mutants with reduced CHD8 function die shortly after birth, it is not possible to fully determine to what extent reduced CHD8 function results in autism-associated behaviours in mice. Conclusions: Together, these findings identify important, dosage-sensitive functions for CHD8 in p53 pathway repression, neurodevelopmental gene expression and neural progenitor fate in the embryonic neocortex. We conclude that brain development is acutely sensitive to reduced CHD8 expression and that the varying sensitivities of different progenitor populations and cellular processes to CHD8 dosage result in non-linear effects on gene transcription and brain growth. Shaun Hurley, Conor Mohan and Philipp Suetterlin have contributed equally to this work

    Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism

    No full text
    In order to understand the consequences of the mutation on behavioral and biological phenotypes relevant to autism, mutations in many of the risk genes for autism spectrum disorder have been experimentally generated in mice. Here, we summarize behavioral outcomes and neuroanatomical abnormalities, with a focus on high-resolution magnetic resonance imaging of postmortem mouse brains. Results are described from multiple mouse models of autism spectrum disorder and comorbid syndromes, including the 15q11-13, 16p11.2, 22q11.2, Cntnap2, Engrailed2, Fragile X, Integrinβ3, MET, Neurexin1a, Neuroligin3, Reelin, Rett, Shank3, Slc6a4, tuberous sclerosis, and Williams syndrome models, and inbred strains with strong autism-relevant behavioral phenotypes, including BTBR and BALB. Concomitant behavioral and neuroanatomical abnormalities can strengthen the interpretation of results from a mouse model, and may elevate the usefulness of the model system for therapeutic discovery
    corecore