95 research outputs found

    Improved cycling performance with ingestion of hydrolyzed marine protein depends on performance level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effect on performance of protein ingestion during or after exercise is not clear. This has largely been attributed to the utilization of different scientific protocols and the neglection of accounting for factors such as differences in physical and chemical properties of protein supplements and differences in athletic performance level.</p> <p>Methods</p> <p>We hypothesized that ingestion of unprocessed whey protein (15.3 g·h<sup>-1</sup>) together with carbohydrate (60 g·h<sup>-1</sup>), would provide no ergogenic effect on 5-min mean-power performance following 120 min cycling at 50% of maximal aerobic power (2.8 ± 0.2 W·kg<sup>-1</sup>, corresponding to 60 ± 4% of VO<sub>2max</sub>), compared to CHO alone (60 g·h<sup>-1</sup>). Conversely, we hypothesized that ingestion of the hydrolyzed marine protein supplement NutriPeptin™ (Np, 2.7 g·h<sup>-1</sup>), a processed protein supplement with potentially beneficial amino acid composition, together with a PROCHO beverage (12.4 g·h<sup>-1 </sup>and 60 g·h<sup>-1</sup>, respectively) would provide an ergogenic effect on mean-power performance. We also hypothesized that the magnitude of the ergogenic effect of NpPROCHO would be dependent on athletic performance. As for the latter analysis, performance level was defined according to a performance factor, calculated from individual pre values of W<sub>max</sub>, VO<sub>2max </sub>and 5-min mean-power performance, wherein the performance of each subject was ranked relative to the superior cyclist whos performance was set to one. Twelve trained male cyclists (VO<sub>2max </sub>= 65 ± 4 ml·kg<sup>-1</sup>·min<sup>-1</sup>) participated in a randomized double-blinded cross-over study.</p> <p>Results and conclusions</p> <p>Overall, no differences were found in 5-min mean-power performance between either of the beverages (CHO 5.4 ± 0.5 W·kg<sup>-1</sup>; PROCHO 5.3 ± 0.5 W·kg<sup>-1</sup>; NpPROCHO 5.4 ± 0.3 W·kg<sup>-1</sup>) (P = 0.29). A negative correlation was found between NpPROCHO mean-power performance and athletic performance level (using CHO-performance as reference; Pearson R = -0.74, P = 0.006). Moreover, ingestion of NpPROCHO resulted in improved 5-min mean-power performance relative to ingestion of CHO in the six lesser performing subjects compared to the six superior performing subjects (P < 0.05). This suggests that with the current protocol, NpPROCHO provided an ergogenic effect on 5-min mean-power performance in athletes with a lower performance level.</p

    Normalization of gene expression data revisited: the three viewpoints of the transcriptome in human skeletal muscle undergoing load-induced hypertrophy and why they matter

    Get PDF
    The biological relevance and accuracy of gene expression data depend on the adequacy of data normalization. This is both due to its role in resolving and accounting for technical variation and errors, and its defining role in shaping the view point of biological interpretations. Still, the choice of the normalization method is often not explicitly motivated although this choice may be particularly decisive for conclusions in studies involving pronounced cellular plasticity. In this study, we highlight the consequences of using three fundamentally different modes of normalization for interpreting RNA-seq data from human skeletal muscle undergoing exercise-training induced growth. Briefly, 25 participants conducted 12 weeks of high-load resistance training. Muscle biopsy specimens were sampled from m. vastus lateralis before, after two weeks of training (week 2) and after the intervention (week 12) and were subsequently analysed using RNA-seq. Transcript counts were modelled as (1) per-library-size, (2) per-total-RNA, and (3) per-sample-size (per-mg-tissue). Result: Initially, the three modes of transcript modelling led to the identification of three unique sets of stable genes, which displayed differential expression profiles. Specifically, genes showing stable expression across samples in the per-library-size dataset displayed training-associated increases in per-total-RNA and per-sample-size datasets. These gene sets were then used for normalization of the entire dataset, providing transcript abundance estimates corresponding to each of the three biological viewpoints (i.e., per-library-size, per-total-RNA, and per-sample-size). The different normalization modes led to different conclusions, measured as training-associated changes in transcript expression. Briefly, for 27% and 20% of the transcripts, training was associated with changes in expression in per-total-RNA and per-sample-size scenarios, but not in the per-library-size scenario. At week 2, this led to opposite conclusions for 4% of the transcripts between per-library-size and per-sample-size datasets (↑ vs. ↓, respectively). Conclusion: Scientists should be explicit with their choice of normalization strategies and should interpret the results of gene expression analyses with caution. This is particularly important for data sets involving a limited number of genes or involving growing or differentiating cellular models, where the risk of biased conclusions is pronounced.publishedVersio

    Effects of including sprints during prolonged cycling on hormonal and muscular responses and recovery in elite cyclists

    Get PDF
    This study investigated the acute effects of including 30‐second sprints during prolonged low‐intensity cycling on muscular and hormonal responses and recovery in elite cyclists. Twelve male cyclists (VO2max, 73.4 ± 4.0 mL/kg/min) completed a randomized crossover protocol, wherein 4 hours of cycling at 50% of VO2max were performed with and without inclusion of three sets of 3 × 30 seconds maximal sprints (E&S vs E, work‐matched). Muscle biopsies (m. vastus lateralis) and blood were sampled at Pre, immediately after (Post) and 3 hours after (3 h) finalizing sessions. E&S led to greater increases in mRNA levels compared with E for markers of fat metabolism (PDK4, Δ‐Log2 fold change between E&S and E ± 95%CI Post; 2.1 ± 0.9, Δ3h; 1.3 ± 0.7) and angiogenesis (VEGFA, Δ3h; 0.3 ± 0.3), and greater changes in markers of muscle protein turnover (myostatin, ΔPost; −1.4 ± 1.2, Δ3h; −1.3 ± 1.3; MuRF1, ΔPost; 1.5 ± 1.2, all P < .05). E&S showed decreased mRNA levels for markers of ion transport at 3h (Na+‐K+ α1; −0.6 ± 0.6, CLC1; −1.0 ± 0.8 and NHE1; −0.3 ± 0.2, all P < .05) and blunted responses for a marker of mitochondrial biogenesis (PGC‐1α, Post; −0.3 ± 0.3, 3h; −0.4 ± 0.3, P < .05) compared with E E&S and E showed similar endocrine responses, with exceptions of GH and SHBG, where E&S displayed lower responses at Post (GH; −4.1 ± 3.2 μg/L, SHBG; −2.2 ± 1.9 nmol/L, P < .05). Both E&S and E demonstrated complete recovery in isokinetic knee extension torque 24 hours after exercise. In conclusion, we demonstrate E&S to be an effective exercise protocol for elite cyclists, which potentially leads to beneficial adaptations in skeletal muscle without impairing muscle recovery 24 hours after exercise.acceptedVersio

    Increased biological relevance of transcriptome analyses in human skeletal muscle using a model-specific pipeline

    Get PDF
    Abstract Background: Human skeletal muscle responds to weight-bearing exercise with signifcant inter-individual diferences. Investigation of transcriptome responses could improve our understanding of this variation. However, this requires bioinformatic pipelines to be established and evaluated in study-specifc contexts. Skeletal muscle subjected to mechanical stress, such as through resistance training (RT), accumulates RNA due to increased ribosomal biogenesis. When a fxed amount of total-RNA is used for RNA-seq library preparations, mRNA counts are thus assessed in diferent amounts of tissue, potentially invalidating subsequent conclusions. The purpose of this study was to establish a bioinformatic pipeline specifc for analysis of RNA-seq data from skeletal muscles, to explore the efects of diferent normalization strategies and to identify genes responding to RT in a volume-dependent manner (moderate vs. low volume). To this end, we analyzed RNA-seq data derived from a twelve-week RT intervention, wherein 25 participants performed both low- and moderate-volume leg RT, allocated to the two legs in a randomized manner. Bilateral muscle biopsies were sampled from m. vastus lateralis before and after the intervention, as well as before and after the ffth training session (Week 2). Result: Bioinformatic tools were selected based on read quality, observed gene counts, methodological variation between paired observations, and correlations between mRNA abundance and protein expression of myosin heavy chain family proteins. Diferent normalization strategies were compared to account for global changes in RNA to tissue ratio. After accounting for the amounts of muscle tissue used in library preparation, global mRNA expression increased by 43–53%. At Week 2, this was accompanied by dose-dependent increases for 21 genes in rested-state muscle, most of which were related to the extracellular matrix. In contrast, at Week 12, no readily explainable dose-dependencies were observed. Instead, traditional normalization and non-normalized models resulted in counterintuitive reverse dose-dependency for many genes. Overall, training led to robust transcriptome changes, with the number of diferentially expressed genes ranging from 603 to 5110, varying with time point and normalization strategy. Conclusion: Optimized selection of bioinformatic tools increases the biological relevance of transcriptome analyses from resistance-trained skeletal muscle. Moreover,normalization procedures need to account for global changes in rRNA and mRNA abundance.publishedVersio

    Diets and drugs for weight loss and health in obesity - An update

    Get PDF
    Numerous combinations of diets and pharmacological agents, including lifestyle changes, have been launched to treat obesity. There are still ambiguities regarding the efficacies of different approaches despite many clinical trials and the use of animal models to study physiological mechanisms in weight management and obesity comorbidities, Here, we present an update on promising diets and pharmacological aids. Literature published after the year 2005 was searched in PubMed, Medline and Google scholar. Among recommended diets are low-fat (LF) and low-carbohydrate (LC) diets, in addition to the Mediterranean diet and the intermittent fasting approach, all of which presumably being optimized by adequate contents of dietary fibers. A basic point for weight loss is to adopt a diet that creates a permanently negative and acceptable energy balance, and prolonged dietary adherence is a crucial factor. As for pharmacological aids, obese patients with type 2 diabetes or insulin resistance seem to benefit from LC diet combined with a GLP-1 agonist, e.g. semaglutide, which may improve glycemic control, stimulate satiety, and suppress appetite. The lipase inhibitor orlistat is still used to maintain a low-fat approach, which may be favorable e.g. in hypercholesterolemia. The bupropion-naltrexone-combination appears promising for interruption of the vicious cycle of addictive over-eating. Successful weight loss seems to improve almost all biomarkers of obesity comorbidities. Until more support for specific strategies is available, clinicians should recommend an adapted lifestyle, and when necessary, a drug combination tailored to individual needs and comorbidities. Different diets may change hormonal secretion, gut-brain signaling, and influence hunger, satiety and energy expenditure. Further research is needed to clarify mechanisms and how such knowledge can be used in weight management.publishedVersio

    Muscular performance decreases with increasing complexity of resistance exercises in subjects with chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive lung disease (COPD) is associated with impaired muscle functions in addition to the impaired cardiopulmonary capacity inherent to the disease. The purpose of this study was to compare muscular performance between COPD subjects (COPD, n = 11, GOLD grade II/III; FEV1 = 53 ± 14% predicted; 61 ± 7 years) and healthy controls (HC, n = 12, 66 ± 8 years) in three resistance exercises with different complexity: (a) one‐legged knee extension (1KE), and (b) one‐ and (c) two‐ legged leg press (1LP and 2LP, respectively). For each exercise, muscular performance was defined as repetitions to exhaustion at 60% of one‐repetition maximum or overall exercise volume, calculated as the sum of three exercise sets. In HC, muscular performance increased progressively with increasing physiological complexity: 1KE < 1LP 1LP), advocating utilization of one‐legged resistance protocols for rehabilitation purposes.publishedVersio

    Systemic and muscular responses to effort-matched short intervals and long intervals in elite cyclists

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors. Scandinavian Journal of Medicine & Science In Sports published by John Wiley & Sons LtdThe purpose of this study was to compare the acute effects of time- and effort-matched high-intensity intervals on physiological, endocrine, and skeletal muscle molecular variables in elite cyclists. Eight elite cyclists performed short intervals (SI: 30-seconds) and long intervals (LI: 5-minutes) with work:recovery ratio 2:1, using a randomized crossover design. SI was associated with 14% ± 3% higher mean power output (SI; 421 ± 27 vs LI; 371 ± 22 W), and longer working time above 90% of maximal oxygen uptake (VO2max, 54% ± 76%) and 90% peak heart rate (HRpeak, 153% ± 148%) than LI (all P < .05), despite similar degrees of perceived exertion, blood lactate levels and muscle activation measured using EMG root mean square (EMG rms). In blood, SI was associated with more pronounced increases in testosterone and testosterone-tosex hormone-binding globulin (SHBG) ratios, as well as prolonged cortisol responses (P < .05). In skeletal muscle (m. Vastus lateralis), SI and LI led to similar changes in mRNA abundance for a range of transcripts, with the exception of NHE1 mRNA, which decreased after SI (P < .05). Overall, SI was associated with more pronounced physiological and endocrine responses than LI in elite cyclists, suggesting that such training might lead to superior adaptations in elite cyclists.publishedVersio

    Resistance exercise training increases skeletal muscle mitochondrial respiration in chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle mitochondrial dysfunction. Resistance exercise training (RT) is a training modality with a relatively small pulmonary demand that has been suggested to increase skeletal muscle oxidative enzyme activity in COPD. Whether a shift into a more oxidative profile following RT also translates into increased mitochondrial respiratory capacity in COPD is yet to be established. This study investigated the effects of 13 weeks of RT on m. vastus lateralis mitochondrial capacity in 11 per sons with moderate COPD [45% females, age: 69 ± 4 years (mean ± SD), predicted forced expiratory volume in 1 s (FEV1): 56 ± 7%] and 12 healthy controls (75% females, age: 66 ± 5 years, predicted FEV1: 110 ± 16%). RT was supervised and carried out two times per week. Leg exercises included leg press, knee extension, and knee flexion and were performed unilaterally with one leg conducting high-load training (10 repetitions maximum, 10RM) and the other leg conducting low-load training (30 repetitions maximum, 30RM). One-legged muscle mass, maximal muscle strength, and endurance performance were determined prior to and after the RT period, together with mitochondrial respiratory capacity using high-resolution respirometry and citrate synthase (CS) activity (a marker for mitochondrial volume density). Transcriptome analysis of genes associated with mitochondrial function was performed. Resistance exercise training led to similar improvements in one-legged muscle mass, muscle strength, and endurance performance in COPD and healthy individuals. In COPD, mitochondrial fatty acid oxidation capacity and oxidative phosphorylation increased following RT (+13 ± 22%, P = 0.033 and +9 ± 23%, P = 0.035, respectively). Marked increases were also seen in COPD for mitochondrial volume density (CS activity, +39 ± 35%, P = 0.001), which increased more than mitochondrial respiration, leading to lowered intrinsic mitochondrial function (respiration/CS activity) for complex-1- supported respiration ( 12 ± 43%, P = 0.033), oxidative phosphorylation ( 10 ± 42%, P = 0.037), and electron transfer system capacity ( 6 ± 52%, P = 0.027). No differences were observed between 10RM and 30RM RT, nor were there any adaptations in mitochondrial function following RT in healthy controls. RT led to differential expression of numerous genes related to mitochondrial function in both COPD and healthy controls, with no difference being observed between groups. Thirteen weeks of RT resulted in augmented skeletal muscle mitochondrial respiratory capacity in COPD, accompanied by alterations in the transcriptome and driven by an increase in mitochondrial quantity rather than improved mitochondrial quality.publishedVersio
    corecore