28 research outputs found

    Identifying solar arrays from overhead imagery

    Get PDF
    Residential solar arrays are an increasingly significant source of electricity. When integrated with the electric grid, the weather-dependent production characteristics of solar arrays can pose challenges. For example, if solar array production drops, e.g., due to a sudden change in weather, idle power generation plants need to be turned on, at substantial additional expense. Conversely, if solar production soars, the spot price of electricity may drop, leading to losses. For purposes of grid planning, it is valuable to know the size, orientation and distribution of solar arrays in a given region. Additionally, the availability of a nationwide map of solar-powered rooftops can spur further adoption of solar power. This disclosure provides techniques to determine parameters such as size, orientation, and distribution of solar arrays from analysis of overhead aerial imagery

    Estimating Residential Solar Potential Using Aerial Data

    Full text link
    Project Sunroof estimates the solar potential of residential buildings using high quality aerial data. That is, it estimates the potential solar energy (and associated financial savings) that can be captured by buildings if solar panels were to be installed on their roofs. Unfortunately its coverage is limited by the lack of high resolution digital surface map (DSM) data. We present a deep learning approach that bridges this gap by enhancing widely available low-resolution data, thereby dramatically increasing the coverage of Sunroof. We also present some ongoing efforts to potentially improve accuracy even further by replacing certain algorithmic components of the Sunroof processing pipeline with deep learning

    A scalable system to measure contrail formation on a per-flight basis

    Full text link
    Persistent contrails make up a large fraction of aviation's contribution to global warming. We describe a scalable, automated detection and matching (ADM) system to determine from satellite data whether a flight has made a persistent contrail. The ADM system compares flight segments to contrails detected by a computer vision algorithm running on images from the GOES-16 Advanced Baseline Imager. We develop a 'flight matching' algorithm and use it to label each flight segment as a 'match' or 'non-match'. We perform this analysis on 1.6 million flight segments. The result is an analysis of which flights make persistent contrails several orders of magnitude larger than any previous work. We assess the agreement between our labels and available prediction models based on weather forecasts. Shifting air traffic to avoid regions of contrail formation has been proposed as a possible mitigation with the potential for very low cost/ton-CO2e. Our findings suggest that imperfections in these prediction models increase this cost/ton by about an order of magnitude. Contrail avoidance is a cost-effective climate change mitigation even with this factor taken into account, but our results quantify the need for more accurate contrail prediction methods and establish a benchmark for future development.Comment: 25 pages, 6 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Mechanics, malignancy, and metastasis: The force journey of a tumor cell

    Full text link
    corecore