86 research outputs found
Constructions of diagonal quartic and sextic surfaces with infinitely many rational points
In this note we construct several infinite families of diagonal quartic
surfaces \begin{equation*} ax^4+by^4+cz^4+dw^4=0, \end{equation*} where
with infinitely many rational points and
satisfying the condition . In particular, we present an
infinite family of diagonal quartic surfaces defined over \Q with Picard
number equal to one and possessing infinitely many rational points. Further, we
present some sextic surfaces of type , , , or
, with infinitely many rational points.Comment: revised version will appear in International Journal of Number Theor
Implicit Simulations using Messaging Protocols
A novel algorithm for performing parallel, distributed computer simulations
on the Internet using IP control messages is introduced. The algorithm employs
carefully constructed ICMP packets which enable the required computations to be
completed as part of the standard IP communication protocol. After providing a
detailed description of the algorithm, experimental applications in the areas
of stochastic neural networks and deterministic cellular automata are
discussed. As an example of the algorithms potential power, a simulation of a
deterministic cellular automaton involving 10^5 Internet connected devices was
performed.Comment: 14 pages, 3 figure
Ranks of quadratic twists of elliptic curves
We report on a large-scale project to investigate the ranks of elliptic curves in
a quadratic twist family, focussing on the congruent number curve. Our methods to exclude
candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil
explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists
are reasonably common (though still quite difficult to find), while rank 7 twists seem much
more rare. We also describe our inability to find a rank 8 twist, and discuss how our results here
compare to some predictions of rank growth vis-Ã -vis conductor. Finally we explicate a heuristic
of Granville, which when interpreted judiciously could predict that 7 is indeed the maximal rank
in this quadratic twist family
Quadri-tilings of the plane
We introduce {\em quadri-tilings} and show that they are in bijection with
dimer models on a {\em family} of graphs arising from rhombus
tilings. Using two height functions, we interpret a sub-family of all
quadri-tilings, called {\em triangular quadri-tilings}, as an interface model
in dimension 2+2. Assigning "critical" weights to edges of , we prove an
explicit expression, only depending on the local geometry of the graph ,
for the minimal free energy per fundamental domain Gibbs measure; this solves a
conjecture of \cite{Kenyon1}. We also show that when edges of are
asymptotically far apart, the probability of their occurrence only depends on
this set of edges. Finally, we give an expression for a Gibbs measure on the
set of {\em all} triangular quadri-tilings whose marginals are the above Gibbs
measures, and conjecture it to be that of minimal free energy per fundamental
domain.Comment: Revised version, minor changes. 30 pages, 13 figure
Thermodynamics of Mesoscopic Vortex Systems in 1+1 Dimensions
The thermodynamics of a disordered planar vortex array is studied numerically
using a new polynomial algorithm which circumvents slow glassy dynamics. Close
to the glass transition, the anomalous vortex displacement is found to agree
well with the prediction of the renormalization-group theory. Interesting
behaviors such as the universal statistics of magnetic susceptibility
variations are observed in both the dense and dilute regimes of this mesoscopic
vortex system.Comment: 4 pages, REVTEX, 6 figures included. Comments and suggestions can be
sent to [email protected]
Interlaced particle systems and tilings of the Aztec diamond
Motivated by the problem of domino tilings of the Aztec diamond, a weighted
particle system is defined on lines, with line containing
particles. The particles are restricted to lattice points from 0 to , and
particles on successive lines are subject to an interlacing constraint. It is
shown that marginal distributions for this particle system can be computed
exactly. This in turn is used to give unified derivations of a number of
fundamental properties of the tiling problem, for example the evaluation of the
number of distinct configurations and the relation to the GUE minor process. An
interlaced particle system associated with the domino tiling of a certain half
Aztec diamond is similarly defined and analyzed.Comment: 17 pages, 4 figure
Borel-Cantelli sequences
A sequence in is called Borel-Cantelli (BC) if
for all non-increasing sequences of positive real numbers with
the set
has full Lebesgue measure. (To put it informally, BC
sequences are sequences for which a natural converse to the Borel-Cantelli
Theorem holds).
The notion of BC sequences is motivated by the Monotone Shrinking Target
Property for dynamical systems, but our approach is from a geometric rather
than dynamical perspective. A sufficient condition, a necessary condition and a
necessary and sufficient condition for a sequence to be BC are established. A
number of examples of BC and not BC sequences are presented.
The property of a sequence to be BC is a delicate diophantine property. For
example, the orbits of a pseudo-Anosoff IET (interval exchange transformation)
are BC while the orbits of a "generic" IET are not.
The notion of BC sequences is extended to more general spaces.Comment: 20 pages. Some proofs clarifie
Black holes admitting a Freudenthal dual
The quantised charges x of four dimensional stringy black holes may be
assigned to elements of an integral Freudenthal triple system whose
automorphism group is the corresponding U-duality and whose U-invariant quartic
norm Delta(x) determines the lowest order entropy. Here we introduce a
Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although
distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the
requirement that \tilde{x} be integer restricts us to the subset of black holes
for which Delta(x) is necessarily a perfect square. The issue of higher-order
corrections remains open as some, but not all, of the discrete U-duality
invariants are Freudenthal invariant. Similarly, the quantised charges A of
five dimensional black holes and strings may be assigned to elements of an
integral Jordan algebra, whose cubic norm N(A) determines the lowest order
entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a
perfect cube, for which A**=A and which leaves N(A) invariant. The two
dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde
Arithmetic properties of blocks of consecutive integers
This paper provides a survey of results on the greatest prime factor, the
number of distinct prime factors, the greatest squarefree factor and the
greatest m-th powerfree part of a block of consecutive integers, both without
any assumption and under assumption of the abc-conjecture. Finally we prove
that the explicit abc-conjecture implies the Erd\H{o}s-Woods conjecture for
each k>2.Comment: A slightly corrected and extended version of a paper which will
appear in January 2017 in the book From Arithmetic to Zeta-functions
published by Springe
- …