81 research outputs found

    Temporal integration and attentional selection of color and contrast target pairs in rapid serial visual presentation

    Get PDF
    Performance in a dual target rapid serial visual presentation task was investigated, dependent on whether the color or the contrast of the targets was the same or different. Both identification accuracy on the second target, as a measure of temporal attention, and the frequency of temporal integration were measured. When targets had a different color (red or blue), overall identification accuracy of the second target and identification accuracy of the second target at Lag 1 were both higher than when targets had the same color. At the same time, increased temporal integration of the targets at Lag 1 was observed in the different color condition, even though actual (non-integrated) single targets never consisted of multiple colors. When the color pairs were made more similar, so that they all fell within the range of a single nominal hue (blue), these effects were not observed. Different findings were obtained when contrast was manipulated. Identification accuracy of the second target was higher in the same contrast condition than in the different contrast condition. Higher identification accuracy of both targets was furthermore observed when they were presented with high contrast, while target contrast did not influence temporal integration at all. Temporal attention and integration were thus influenced differently by target contrast pairing than by (categorical) color pairing. Categorically different color pairs, or more generally, categorical feature pairs, may thus afford a reduction in temporal competition between successive targets that eventually enhances attention and integration

    The effects of Kanizsa contours on temporal integration and attention in rapid serial visual presentation

    Get PDF
    Performance in rapid serial visual presentation tasks has been shown to depend on the temporal integration of target stimuli when they are presented in direct succession. Temporal target integration produces a single, combined representation of visually compatible stimuli, which is comparatively easy to identify. It is currently unknown to what extent target compatibility affects this perceptual behavior, since it has not been studied systematically to date. In the present study the effects of compatibility on temporal integration and attention were investigated by manipulating the Gestalt properties of target features. Of particular interest were configurations in which a global illusory shape was formed when all stimulus features were present; a Kanizsa stimulus, which was expected to have a unifying effect on the perception of the successive targets. The results showed that although the presence of a Kanizsa shape can indeed enhance temporal integration, this was also observed for other good Gestalts, such as due to common fate and closure. Identification accuracy seemed to vary, possibly as a result of masking strength, but this did not seem associated with attentional processing per se. Implications for theories of Gestalt processing and temporal integration are discussed

    Unimodal and Bimodal Access to Sensory Working Memories by Auditory and Visual Impulses

    Get PDF
    It is unclear to what extent sensory processing areas are involved in the maintenance of sensory information in working memory (WM). Previous studies have thus far relied on finding neural activity in the corresponding sensory cortices, neglecting potential activity-silent mechanisms, such as connectivity-dependent encoding. It has recently been found that visual stimulation during visual WM maintenance reveals WM-dependent changes through a bottom-up neural response. Here, we test whether this impulse response is uniquely visual and sensory-specific. Human participants (both sexes) completed visual and auditory WM tasks while electroencephalography was recorded. During the maintenance period, the WM network was perturbed serially with fixed and task-neutral auditory and visual stimuli. We show that a neutral auditory impulse-stimulus presented during the maintenance of a pure tone resulted in a WM-dependent neural response, providing evidence for the auditory counterpart to the visual WM findings reported previously. Interestingly, visual stimulation also resulted in an auditory WM-dependent impulse response, implicating the visual cortex in the maintenance of auditory information, either directly or indirectly, as a pathway to the neural auditory WM representations elsewhere. In contrast, during visual WM maintenance, only the impulse response to visual stimulation was content-specific, suggesting that visual information is maintained in a sensory-specific neural network, separated from auditory processing areas

    A functional spiking-neuron model of activity-silent working memory in humans based on calcium-mediated short-term synaptic plasticity

    Get PDF
    In this paper, we present a functional spiking-neuron model of human working memory (WM). This model combines neural firing for encoding of information with activity-silent maintenance. While it used to be widely assumed that information in WM is maintained through persistent recurrent activity, recent studies have shown that information can be maintained without persistent firing; instead, information can be stored in activity-silent states. A candidate mechanism underlying this type of storage is short-term synaptic plasticity (STSP), by which the strength of connections between neurons rapidly changes to encode new information. To demonstrate that STSP can lead to functional behavior, we integrated STSP by means of calcium-mediated synaptic facilitation in a large-scale spiking-neuron model and added a decision mechanism. The model was used to simulate a recent study that measured behavior and EEG activity of participants in three delayed-response tasks. In these tasks, one or two visual gratings had to be maintained in WM, and compared to subsequent probes. The original study demonstrated that WM contents and its priority status could be decoded from neural activity elicited by a task-irrelevant stimulus displayed during the activity-silent maintenance period. In support of our model, we show that it can perform these tasks, and that both its behavior as well as its neural representations are in agreement with the human data. We conclude that information in WM can be effectively maintained in activity-silent states by means of calcium-mediated STSP

    Visual and auditory temporal integration in healthy younger and older adults

    Get PDF
    As people age, they tend to integrate successive visual stimuli over longer intervals than younger adults. It may be expected that temporal integration is affected similarly in other modalities, possibly due to general, age-related cognitive slowing of the brain. However, the previous literature does not provide convincing evidence that this is the case in audition. One hypothesis is that the primacy of time in audition attenuates the degree to which temporal integration in that modality extends over time as a function of age. We sought to settle this issue by comparing visual and auditory temporal integration in younger and older adults directly, achieved by minimizing task differences between modalities. Participants were presented with a visual or an auditory rapid serial presentation task, at 40-100 ms/item. In both tasks, two subsequent targets were to be identified. Critically, these could be perceptually integrated and reported by the participants as such, providing a direct measure of temporal integration. In both tasks, older participants integrated more than younger adults, especially when stimuli were presented across longer time intervals. This difference was more pronounced in vision and only marginally significant in audition. We conclude that temporal integration increases with age in both modalities, but that this change might be slightly less pronounced in audition

    Illusions of integration are subjectively impenetrable:Phenomenological experience of Lag 1 percepts during dual-target RSVP

    Get PDF
    We investigated the relationship between different kinds of target reports in a rapid serial visual presentation task, and their associated perceptual experience. Participants reported the identity of two targets embedded in a stream of stimuli and their associated subjective visibility. In our task, target stimuli could be combined together to form more complex ones, thus allowing participants to report temporally integrated percepts. We found that integrated percepts were associated with high subjective visibility scores, whereas reports in which the order of targets was reversed led to a poorer perceptual experience. We also found a reciprocal relationship between the chance of the second target not being reported correctly and the perceptual experience associated with the first one. Principally, our results indicate that integrated percepts are experienced as a unique, clear per-ceptual event, whereas order reversals are experienced as confused, similar to cases in which an entirely wrong response was given

    Recoding between two types of STM representation revealed by the dynamics of memory search

    Get PDF
    Visual STM (VSTM) is thought to be related to visual attention in several ways. Attention controls access to VSTM during memory encoding and plays a role in the maintenance of stored information by strengthening memorized content. We investigated the involvement of visual attention in recall from VSTM. In two experiments, we measured electrophysiological markers of attention in a memory search task with varying intervals between VSTM encoding and recall, and so we were able to track recoding of representations in memory. Results confirmed the involvement of attention in VSTM recall. However, the amplitude of the N2pc and N3rs components, which mark orienting of attention and search within VSTM, decreased as a function of delay. Conversely, the amplitude of the P3 and sustained posterior contralateral negativity components increased as a function of delay, effectively the opposite of the N2pc and N3rs modulations. These effects were only observed when verbal memory was not taxed. Thus, the results suggested that gradual recoding from visuospatial orienting of attention into verbal recall mechanisms takes place from short to long retention intervals. Interestingly, recall at longer delays was faster than at short delays, indicating that verbal representation is coupled with faster responses. These results extend the orienting-of-attention hypothesis by including an account of representational recoding during short-term consolidation and its consequences for recall from VSTM

    Two faces of perceptual awareness during the attentional blink:Gradual and discrete

    Get PDF
    In a series of experiments, the nature of perceptual awareness during the attentional blink was investigated. Previous work has considered the attentional blink as a discrete, all-or-none phenomenon, indicative of general access to conscious awareness. Using continuous report measures in combination with mixture modeling, the outcomes showed that perceptual awareness during the attentional blink can be a gradual phenomenon. Awareness was not exclusively discrete, but also exhibited a gradual characteristic whenever the spatial extent of attention induced by the first target spanned more than a single location. Under these circumstances, mental representations of blinked targets were impoverished, but did approach the actual identities of the targets. Conversely, when the focus of attention covered only a single location, there was no evidence for any partial knowledge of blinked targets. These two different faces of awareness during the attentional blink challenge current theories of both awareness and temporal attention, which cannot explain the existence of gradual awareness of targets during the attentional blink. To account for the current outcomes, an adaptive gating model is proposed that casts awareness on a continuum between gradual and discrete, rather than as being of either single kind

    Concealed identity information detection with pupillometry in rapid serial visual presentation

    Get PDF
    The concealed information test (CIT) relies on bodily reactions to stimuli that are hidden in mind. However, people can use countermeasures, such as purposely focusing on irrelevant things, to confound the CIT. A new method designed to prevent countermeasures uses rapid serial visual presentation (RSVP) to present stimuli on the fringe of awareness. Previous studies that used RSVP in combination with electroencephalography (EEG) showed that participants exhibit a clear reaction to their real first name, even when they try to prevent such a reaction (i.e., when their name is concealed information). Because EEG is not easily applicable outside the laboratory, we investigated here whether pupil size, which is easier to measure, can also be used to detect concealed identity information. In our first study, participants adopted a fake name, and searched for this name in an RSVP task, while their pupil sizes were recorded. Apart from this fake name, their real name and a control name also appeared in the task. We found pupil dilation in response to the task-irrelevant real name, as compared to control names. However, while most participants showed this effect qualitatively, it was not statistically significant for most participants individually. In a second study, we preregistered the proof-of-concept methodology and replicated the original findings. Taken together, our results show that the current RSVP task with pupillometry can detect concealed identity information at a group level. Further development of the method is needed to create a valid and reliable concealed identity information detector at the individual level

    Supplementation of gamma-aminobutyric acid (GABA) affects temporal, but not spatial visual attention

    Get PDF
    In a randomized, double-blind, and placebo-controlled experiment, the acute effects of gamma-aminobutyric acid (GABA) supplementation on temporal and spatial attention in young healthy adults were investigated. A hybrid two-target rapid serial visual presentation task was used to measure temporal attention and integration. Additionally, a visual search task was used to measure the speed and accuracy of spatial attention. While temporal attention depends primarily on the distribution of limited attentional resources across time, spatial attention represents the engagement and disengagement by relevant and irrelevant stimuli across the visual field. Although spatial attention was unaffected by GABA supplementation altogether, we found evidence supporting improved performance in the temporal attention task. The attentional blink was numerically, albeit not significantly, attenuated at Lag 3, and significantly fewer order errors were committed at Lag 1, compared to the placebo condition. No effect was found on temporal integration rates. Although there is controversy about whether oral GABA can cross the blood-brain barrier, our results offer preliminary evidence that GABA intake might help to distribute limited attentional resources more efficiently, and can specifically improve the identification and ordering of visual events that occur in close temporal succession
    corecore