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A B S T R A C T

In a randomized, double-blind, and placebo-controlled experiment, the acute effects of gamma-aminobutyric
acid (GABA) supplementation on temporal and spatial attention in young healthy adults were investigated. A
hybrid two-target rapid serial visual presentation task was used to measure temporal attention and integration.
Additionally, a visual search task was used to measure the speed and accuracy of spatial attention. While
temporal attention depends primarily on the distribution of limited attentional resources across time, spatial
attention represents the engagement and disengagement by relevant and irrelevant stimuli across the visual
field. Although spatial attention was unaffected by GABA supplementation altogether, we found evidence
supporting improved performance in the temporal attention task. The attentional blink was numerically, albeit
not significantly, attenuated at Lag 3, and significantly fewer order errors were committed at Lag 1, compared to
the placebo condition. No effect was found on temporal integration rates. Although there is controversy about
whether oral GABA can cross the blood-brain barrier, our results offer preliminary evidence that GABA intake
might help to distribute limited attentional resources more efficiently, and can specifically improve the iden-
tification and ordering of visual events that occur in close temporal succession.

1. Introduction

One of the most prominent research questions in cognitive neu-
roscience today is how the human brain is able to process the fast flow
of information from the quick, ever-changing visual environment
around us. It must be able to select and extract meaningful information
that is comparatively rare from oft-substantial levels of irrelevant
background noise. The success of this filtering mechanism depends on
complex perceptual and attentional operations, which collectively
guide the efficient processing of objects and events. Indeed, any
shortcomings or lapses can cost us dearly, as can be witnessed in traffic
incidents. Optimizing perception and attention could therefore bring
tangible benefits. One way of doing so is by altering the balance of
neurotransmitters in the brain. A prime candidate is the inhibitory
neurotransmitter gamma-aminobutyric acid (GABA), which is one of
the most extensively studied brain chemicals.

Empirical evidence from a large variety of research fields points
towards a link between GABA levels in the brain and visual attention
(e.g., Petersen, Robinson, & Morris, 1987). For example, animal studies
have shown that GABA producing neurons play a key role in the reg-
ulation of attentional resources (McGarrity, Mason, Fone, Pezze, & Bast,

2017; Paine, Slipp, & Carlezon, 2011). In line with this, blockade of
cortical GABA receptors by antagonists is associated with impaired vi-
suospatial attention as measured by a 5-choice serial reaction time task,
which is analogous to tasks that assess sustained attention in humans
(Paine et al., 2011). At the same time, if supra-normal GABA levels in
the brain increase functional inhibition beyond an optimal level, im-
paired attentional processing has also been observed (Pezze, McGarrity,
Mason, Fone, & Bast, 2014). Further evidence from animal studies
suggests that the inhibitory neurotransmitter is directly involved in
visual attention by mediating stimulus selectivity in the primary visual
cortex of the cat brain (Katzner, Busse, & Carandini, 2011).

In humans, Sandberg et al. (2014) found a negative correlation
between GABA levels in the occipital cortex and self-reported cognitive
failures – the deficiency to attend to relevant stimuli and to suppress
irrelevant information – in daily life. Possibly, GABA strengthens in-
hibitory processes in the visual cortex improving the ability to disen-
gage from irrelevant stimuli and suppress elaborate object processing,
thereby promoting a more balanced distribution of attentional re-
sources (Sandberg et al., 2014).

Furthermore, GABAergic system alterations have been found to af-
fect visual integration processes through lorazepam administration,
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which is a benzodiazepine that enhances the neurotransmitter’s effects
(Giersch, 2001). Experiments have also shown that identifying gaps
between line segments is easier after lorazepam intake compared to a
placebo intake, indicating that GABA modulates and improves the
processing of discontinuities in line segments (Giersch, 2001; Giersch,
Boucart, Danion, Vidailhet, & Legrand, 1995).

Finally, there is also indirect evidence from transcutaneous vagus
nerve stimulation that GABA levels modulate the efficiency of response
selection (Steenbergen et al., 2015a). Transcutaneous vagus nerve sti-
mulation is a non-invasive experimental technique that triggers the
release of the neurotransmitter in the brain (Van Leusden, Sellaro, &
Colzato, 2015), and which has been mainly used to treat patients with
epilepsy, who suffer from an abnormal reduction in GABA-ergic func-
tion (Treiman, 2001). Transcutaneous vagus nerve stimulation has been
linked with increased GABA-ergic cortical activity (Capone et al.,
2015), and increased free GABA levels in the cerebrospinal fluid (Ben-
Menachem et al., 1995). Increased GABA-A receptor density has also
been observed after long-term exposure (Marrosu et al., 2003). How-
ever, it is also known to affect a wide range of other physiological
mechanisms. Steenbergen et al. (2015a) had their participants perform
a stop-change action cascading task, in which the speed of changed
responses was measured. Stimulation resulted in faster responses than a
sham condition, suggesting that response selection was facilitated by
increased GABA levels, although it must be noted these were not
measured in the study so that the link between performance and GABA
levels remains only circumstantially supported.

In view of these various effects of GABA, it would be desirable to be
able to modulate GABA levels in the brain more easily, for instance to
attain cognitively beneficial levels. As it happens, in the past few years,
GABA has become more widely available as a food supplement to the
general population (Boonstra et al., 2015), holding the promise that
simply ingesting GABA could result in attaining cognitive benefits.
However, the evidence to date for cognitive effects of GABA ingestion
are limited. Indeed, it has long been thought that the blood-brain bar-
rier would prevent the uptake of GABA, rendering its consumption in-
effective (Van Gelder & Elliott, 1958). Nevertheless, Steenbergen,
Sellaro, Stock, Beste, and Colzato (2015b) administered an oral dose of
800mg GABA to participants, who performed a stop-change paradigm,
as in the previously cited study by Steenbergen et al. (2015a), and
observed enhanced action selection, replicating and extending their
previous study.

In view of these results, it is conceivable that oral ingestion of a
comparable dose of GABA could also enhance attentional processing,
but there is no evidence for that to date. Therefore, the specific effect of
GABA supplementation on attentional deployment was investigated in
the present study. To measure both temporal and spatial aspects of
attention, two different tasks were implemented: A rapid serial visual
presentation (RSVP) task, and a visual search (VS) task. The over-
arching hypothesis was that GABA consumption should help to select
relevant information and thus improve performance in both tasks. The
RSVP and VS task have diverse backgrounds, which are briefly sum-
marized below.

1.1. Rapid serial visual presentation

By means of RSVP, one of the most widely studied aspects of tem-
poral attention is the attentional blink (AB), a phenomenon in which
the second of two visual targets is often missed by observers when both
targets occur at a stimulus onset asynchrony (SOA) between 150 and
500ms (Broadbent & Broadbent, 1987; Raymond, Shapiro, & Arnell,
1992). The challenge of the RSVP task lies in the identification and
segregation of relevant targets that are close in temporal succession
within a fast stream of consecutive distractors. The failure to process
two target stimuli that are close in temporal succession is hypothesized
to arise from a limited amount of attentional resources (e.g., Chun &
Potter, 1995). In general, processing the first target (T1) is thought to

undermine the proper processing of the second target (T2). The idea of
limited cognitive resources has been supported by many previous stu-
dies (for a review, see Martens & Wyble, 2010).

Taking this idea one step further, it has been proposed that the blink
arises due to an overinvestment in T1 identification, which leaves in-
sufficient attentional resources for the processing of T2 (Olivers &
Nieuwenhuis, 2006; Shapiro, Schmitz, Martens, Hommel, & Schnitzler,
2006). Studies show that the AB effect is attenuated when this over-
investment is prevented. For example, extraneous cognitive load during
an RSVP task leads to distracting mental activity thereby preventing
elaborate processing of T1 and leaving more resources for the identi-
fication of the second target (Nieuwenstein, Chun, van der Lubbe, &
Hooge, 2015; Zhang, Shao, Zhou, & Martens, 2010). The additional
cognitive load presumably leads to a more balanced distribution of
attentional resources, thereby preventing the allocation of too many
resources towards T1 processing. Further support was obtained by
Slagter et al. (2007), who found a positive correlation between P3 size –
an event-related potential (ERP) component that is sensitive to (prior)
attentional resource allocation – and AB magnitude, providing further
support for the hypothesis that T2 identification success is dependent
on attentional deployment during T1 processing.

A secondary aspect that has been studied with RSVP is temporal
integration, which can be observed when targets succeed each other
directly, without intervening distractors, at Lag 1 (Akyürek et al.,
2012). Lag 1 is a special case in RSVP, because many studies report Lag
1 “sparing”, a paradoxical improvement of target identification in the
shortest Lag condition, where processing time is most limited (Visser,
Bischof, & Di Lollo, 1999). This phenomenon may in turn be related to a
loss of order information that is most prevalent in the Lag 1 condition,
suggesting that the typical increase in identification performance may
come at a cost (Hommel & Akyürek, 2005). Akyürek et al. (2012)
provided proof that these performance characteristics at Lag 1 are re-
lated to the occurrence of temporal integration, a perceptual process by
which the successive targets are combined into a single, integrated
percept. Thus, next to providing an index of temporal attention and the
AB, the RSVP task can also be used to assess temporal integration.

1.2. Visual search

Selection of task-relevant targets within an array of distractors is
mediated by spatial attention – the allocation of attentional resources
across a visual scene. Particularly in feature-based search tasks, in
which the observer is asked to find the targets by virtue of a specific
feature (e.g., a diamond shape), or feature combination (e.g., a red
diamond), search depends on the similarity of targets and other ele-
ments in the display, typically referred to as distractors (Treisman &
Gelade, 1980; Wolfe, 1994). When targets are more similar to dis-
tractors, they are harder to find. Similarity is defined on the feature
level, but also by whether they are defined in the same feature di-
mension (e.g., color or shape) or not. If the search cannot be resolved
simply by looking for anything deviant within a search array (i.e., by
singleton search; Bacon & Egeth, 1994), dimensionality strongly de-
termines search efficiency, such that search for targets that are defined
by features that belong to the same dimension as those of the distractors
is difficult (Müller, Heller, & Ziegler, 1995).

An exemplary task in which such effects have been observed is the
dual-singleton task, in which a target is not the only deviant item in a
search array of otherwise uniform distractors, but is always presented
with another salient item; a “nontarget” (e.g., Akyürek & Schubö,
2011). Here search is defined by a specific feature, such as the color
blue, and the nontargets then either share this feature dimension by
also having a color, but not the target color (e.g., red), or another
salient feature, such as having a different line orientation. Although the
different-dimensional feature of line orientation also makes the non-
target salient within the array, target search is much easier than for the
same-dimensional trials, leading to shorter reaction times. ERP
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components that track the distribution of attention across the visual
field, such as the N2pc, also reflect that attention is drawn heavily to-
wards same-dimension nontargets, but not at all to different-dimension
ones (Akyürek & Schubö, 2011). Thus, the dual singleton VS task in-
cludes dimension-based conditions in which attention is particularly
taxed, and ones in which it is not—similar to the lag-based conditions of
the RSVP task.

1.3. The present study

Although spatial attention and temporal attention are dissociable in
some cases (Coull & Nobre, 1998; Rolke, Festl, & Seibold, 2016), in the
current study the predictions with regard to the effects of GABA intake
were similar. In general, ingestion of 800mg of GABA (cf. Steenbergen
et al., 2015b) was expected to increase performance in both RSVP and
VS tasks by promoting a more balanced distribution of attentional re-
sources and/or by facilitating the filtering of irrelevant information. If
GABA is targeting temporal attention, this would be expected to im-
prove (a) target identification and/or (b) target sequencing in the RSVP
task, which would be indicated by a reduced AB and fewer order errors
at short lags, respectively. If GABA is targeting spatial attention, this
would be expected to improve speed and accuracy in the more chal-
lenging shared feature dimension condition of the VS task, which could
be taken to indicate improved attentional filtering.

2. Method

2.1. Participants

Twenty-four undergraduate psychology students (4 males, mean
age= 20.2 years, range 18–24 years) at the University of Groningen
participated in the experiment for course credit. This sample size was
chosen to match those of previous studies that were conducted with the
same tasks (Akyürek & Schubö, 2011; Akyürek et al., 2012). The study
was conducted in accordance with the Declaration of Helsinki (2008),
and approved by the departmental ethical committee prior to its ex-
ecution (15078-NE). All participants gave written informed consent. In
order to determine eligibility for participation in the study subjects
were interviewed via phone with the Mini International Neu-
ropsychiatric Interview (MINI); a short, structured interview screening
for various mental and neurological disorders. The MINI interview is
often used in clinical and pharmacological research (Sheehan et al.,
1998). Subjects could not take part in the study in case of any cardiac,
hepatic or renal disorders, any mental disorder, regular use of medi-
cation or any kind of drug use three months prior to the study. Hor-
monal contraception was a requirement for female participants. All
participants had a weight between 55 and 70 kg and did not take any
kind of food supplements related to the present study. Subjects had
normal or corrected-to-normal vision and were asked to come to the lab
for two sessions with one week between both sessions. They were re-
minded multiple times to abstain from smoking, coffee, and food 12 h
prior to their visit to the lab. Also, they were asked to abstain from
alcohol 24 h before coming to the lab. Sessions were always scheduled
early in the morning to counter circadian effects.

2.2. General apparatus

Participants were individually seated in a dimly lit room at a dis-
tance of about 60 cm from a 22-in. CRT screen. The screen was driven
by a standard personal computer running the Microsoft Windows XP
operating system with a refresh rate of 100 Hz in 16-bit color. The
experimental tasks were programmed in E-Prime Professional, Version
2.0 (Psychology Software Tools) and responses were logged on a USB
keyboard.

2.3. General procedure

As indicated, participants took part in two sessions. Each of the
these comprised both the RSVP and VS tasks. Task order was rando-
mized and equally distributed across participants. Before the start of
each task, participants had some time to read the instructions and ask
questions. At the start of each session, participants were administered
an oral dose of either 800mg of synthetic GABA or 800mg of micro-
crystalline cellulose, the latter fulfilling the role of a placebo. Both
doses consisted of inconspicuous white powders that were dissolved in
200ml of orange juice. An independent person not otherwise involved
in the study prepared a randomized list that coded for participants to
receive either placebo or GABA, and the matching treatment doses.
Thus, the administration was carried out in a double-blind fashion.

Studies involving GABA suggest that higher GABA levels are asso-
ciated with improvements in mood (Brambilla, Perez, Barale, Schettini,
& Soares, 2003). To rule out an account of our results in terms of change
in affective states participants were asked to rate their mood and
arousal on a 9× 9 Pleasure×Arousal grid (Russell, Weis, &
Mendelsohn, 1989) with values ranging from −4 to 4. Furthermore,
given that altered GABA levels were found to have an influence on
animals’ cardiovascular system (Zhang & Mifflin, 2010), the heart rate
(HR) of the participants was measured using an electrocardiogram
(ECG) device. Measurements took place before the treatment, and
30min after the GABA or placebo intake. 15min after the second HR
measurement participants started with the RSVP task or the VS task,
depending on the order. Upon completion of the session, participants
again rated their mood before having their HR measured for the third
time.

2.4. RSVP task: Apparatus and stimuli

Fig. 1 illustrates a typical trial example of the RSVP task. The RSVP
task was run at a resolution of 1024 by 768 pixels. A light gray (RGB
192, 192, 192) background was maintained throughout the experiment.
Stimuli were adopted from Akyürek et al. (2012). Before the start of
each trial a fixation cross (“+”), drawn in 18-point, boldface Courier
New font appeared at the center of the screen. The ensuing RSVP
consisted of black distractor and target stimuli, drawn in the same 52-
point font. Distractor stimuli were upper-case letters randomly drawn
from the alphabet without replacement. Target stimuli consisted of one
or more corners of a square of which each horizontal and vertical sides
were 23 pixels long and 7 pixels wide. The entire square was 54×54
pixels in size, which left a gap of 8 pixels between the corners. The area
within which the targets were presented was similar in size to the
distractors. Possible combinations of T1 and T2 appeared randomly and
equally often across trials, but it was ensured that features of T1 did not
overlap with the features of T2 within one trial. Eliminating such
overlap is essential to be able to measure integration responses, in
which the features of both targets are combined into a single reported
percept.

2.5. RSVP task: Procedure

The task in each of the two experimental sessions consisted of 320
experimental trials, divided into two blocks, and 20 practice trials that
were discarded from further analyses. Participants were offered to take
a break between blocks. 100ms after the start of each self-paced trial, a
fixation cross appeared for 200ms at the center of the screen. The RSVP
sequence then commenced, containing 18 stimuli, each with a duration
of 70ms, with a 10ms blank interval between each stimulus. The
stream was followed by another 100ms delay, before the response
screens were presented.

The three experimental conditions that were analyzed differed in
the number of distractors between T1 and T2. T1 appeared either on the
fifth or the seventh position of the RSVP stream. T2 succeeded T1 after

A. Leonte et al. Brain and Cognition 120 (2018) 8–16

10



either 0, 2, or 7 distractors, referred to as Lag 1, 3, or 8 respectively.
Each of these conditions occurred 100 times. There were also 20 trials
in which there was no T2. Participants were nonetheless always asked
to first identify T1 and then T2. Each target figure was identified by
pressing the specified keys in a previously instructed order on the nu-
meric keypad. The upper left corner corresponded to the 4 key, the
upper right corner to the 5 key, the lower left corner to the 1 key, and
the lower right corner to the 2 key. Thus, participants reconstructed the
first and second target figure they perceived by pressing the corre-
sponding keys. By pressing Enter, they finished their response. In case
they had not seen a target, they were informed they could simply press
Enter immediately, leaving the relevant prompt empty.

2.6. RSVP task: Design

Statistical analyses were performed in SPSS using a 2×3 repeated
measures analysis of variance (ANOVA) with GABA consumption
(placebo or GABA) and T1-T2 lag (1, 3, or 8) as within-subjects vari-
ables. If the assumption of sphericity was violated Greenhouse-Geisser
epsilon correction was applied. For the analysis of T1 and conditional
T2 accuracy (i.e., T2|T1), correct report order was required for the
target(s) to be considered fully correct. Order errors and integrations
were analyzed separately. Order errors constituted cases in which T2
was reported as T1 and vice versa, with the target identities as such

being correct. An integration response was only counted if it matched
exactly the features of both targets combined, and if it was entered in a
single response prompt, while leaving the other prompt empty.

2.7. VS task: Apparatus and stimuli

Fig. 2 illustrates the visual search task. The VS task was presented at
a resolution of 800 by 600 pixels. A white background was maintained
throughout the experiment. Each trial started with the presentation of a
fixation cross (“+”), drawn in 18-point, boldface Courier New font.
Stimuli consisted of 21 vertical line segments that were 30 pixels long
and were presented at the center of the screen in a circular array with
50 pixels between each stimulus. For each line segment a random dis-
placement jitter of 0–5 pixels in both horizontal and vertical directions
was used. Each trial consisted of black vertical line segments and either
one target line (vertical line in the target color) and one nontarget line
(either a black tilted line or a vertical line in a nontarget color), or two
nontargets (two lines of different orientations or two vertical lines in
different nontarget colors). Possible colors were red, green, and blue
(pure single channel RGB values). Possible orientations (other than
vertical) were implemented by a 10-pixel displacement of the line
endpoints (∼48° tilt), either to the left or right.

2.8. VS task: Procedure

Each of the two experimental sessions consisted of one practice

Fig. 1. The rapid serial visual presentation task. Lag is defined by the temporal position of
the second target with regard to the first, and the resultant number of distractors in-
between. Frames with dashed outlines represent a variable number of letter distractors.
Trial-wise examples of first and second target stimuli and their associated integration
responses are shown on the bottom right. Dotted outlines were not presented to the
participants and are shown for illustration only. Resp.= response; T1= first target;
T2= second target.

Fig. 2. The visual search task. Target presence and nontarget feature dimension condi-
tions are depicted on the bottom right. Target and nontarget pairs always appeared on
different sides of the search array. Targets were defined by color, while nontargets either
had another color, or a different orientation (non-vertical). T CNT= target and color
nontarget; T ONT= target and orientation nontarget; CNT= two color nontargets;
ONT= two orientation nontargets.
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block of 32 trials that were excluded from further analyses and 2 sets of
3 experimental blocks of 96 trials, for a total of 576 experimental trials.
Before the start of a new block, participants were told which color they
should attend to in the following trials, which was different between
blocks and counterbalanced. Between the two sets of blocks, there was
another explicit opportunity to pause. Trials were evenly distributed
over four experimental conditions, crossing target presence with feature
dimension; comprising a color target with a color non-target (T CNT), a
color target with an orientation non-target (T ONT), two color non-
targets (CNT) and two orientation non-targets (ONT). Because color
was the task-relevant dimension, the T CNT and CNT trials made up the
shared feature dimension condition, and the T ONT and ONT trials
made up the different dimension condition. Targets appeared randomly
but equally often on the left and right side of the visual field. Nontargets
appeared on the other side, and this visual hemi-field balancing was
maintained when two nontargets appeared.

At the start of each trial a fixation cross appeared for 600–1000ms
at the center of the screen. Immediately after, the search array was
shown for 400ms and followed by a blank screen for 600ms. In re-
sponse to the array, and within the total interval of the search array and
the blank (i.e., 1000ms), participants had to indicate whether the
target was present or absent by pressing the ‘1’ key on the numeric
keypad if the target was present among the line segments and ‘2’ when
it was not. Depending on the accuracy of the response, positive or ne-
gative feedback, “:)” or “:(”, was provided for 200ms, and the next trial
commenced.

2.9. VS task: Design

The analysis approach was identical to the RSVP task, except that
the design was now a 2×2×2 repeated measures ANOVA, with GABA
consumption (placebo or GABA), target presence (present or absent)
and nontarget feature dimension (same or different) as within-subjects
variables. Both response accuracy and reaction time were analyzed.
Trials with missing responses or reaction times lower than 100ms were
discarded from all analyses, and reaction times were analyzed for cor-
rect trials only.

2.10. Data availability

The behavioral data, as well as the analysis scripts used, are publicly
available from the Open Science Framework repository with the iden-
tifier s2w97 (https://osf.io/s2w97; doi: 10.17605/OSF.IO/S2W97).

3. Results

3.1. RSVP task

As can be seen in the top left panel of Fig. 3, simple target detection
was not affected by GABA intake, as the analysis of T1 identification
accuracy revealed. There was no main effect of GABA, and no inter-
action with lag (F’s < 1). Lag by itself had a pronounced effect, as is
commonly observed in this version of the task (e.g., Akyürek et al.,
2012), F(1.1, 26)= 217.08, MSE=0.03, p < .001, ηp

2 =0.9: At Lag 1,
accuracy was much lower (30.5%) than at Lag 3 (74.3%) and Lag 8
(81.4%).

Conditional T2 accuracy (T2|T1) is shown in the top right panel of
Fig. 3. It was also affected by Lag, F(1.4, 32.1)= 67.31, MSE=0.029,
p < .001, ηp

2 =0.75, showing a steady increase in accuracy for longer
lags, averaging 52.6% at Lag 1, 72.4% at Lag 3, and 86.3% at Lag
8—evidence of the AB. There was no main effect of GABA (F < 1), but
the interaction term was significant, F(2, 46)= 6.21, MSE=0.005,
p < .005, ηp

2 =0.21. Accuracy at Lag 3 was 5.7% higher after GABA
consumption than after the placebo, while at both Lag 1 and 8, per-
formance was not improved, but slightly lower (−4.2% and −1.2%,

respectively). Two-sided permutation tests (50,000 repetitions) on the
differences at the blink-sensitive lags did not reveal significant differ-
ences (p < .28 at Lag 1 and p < .13 at Lag 3), but the GABA effect at
Lag 3 was significantly different from both Lag 1, p < .02, and Lag 8,
p < .05, Bonferroni-corrected.

Integration frequency is shown in the bottom left panel of Fig. 3.
Integrations were affected by Lag, F(1, 23.2)= 40.59, MSE=0.041,
p < .001, ηp

2 =0.64. As expected, integrations were frequent at Lag 1
(24.5%), but not at Lag 3 (2.3%) and Lag 8 (0.9%). GABA did not have a
main effect (F < 1), and did not interact with Lag either (F < 1.3).

Order reversal frequency is shown in the bottom right panel of
Fig. 3. Order reversals, like integrations, were affected by Lag, F(1.2,
27.5)= 25.74, MSE=0.001, p < .001, ηp

2 =0.53. Reversals were
more frequent at Lag 1 (5%) than at Lag 3 (2.3%) and Lag 8 (0.8%).
Although GABA did not have a main effect (F < 1.6), it did interact
with Lag, F(2, 46)= 5.7, MSE=0.001, p < .006, ηp

2 =0.2. At Lag 1,
GABA consumption reduced reversal frequency by 2%, compared to a
slight increase of 0.6% at Lag 3, and a negligible difference at Lag 8 of
0.1%. Permutation tests of the means showed that the difference be-
tween GABA and placebo at Lag 1 was significant, p < .03. The GABA
effect at Lag 1 also differed significantly from that at Lag 3, p < .02,
but did not survive Bonferroni correction at Lag 8, p < .12.

3.2. VS task

Accuracy in the visual search task is shown in the top panel of Fig. 4.
Accuracy was affected both by target presence, F(1, 23)= 9.93,
MSE=0.002, p < .004, ηp

2 =0.3, and feature dimension, F(1,
23)= 60.55, MSE=0.001, p < .001, ηp

2 =0.73. Accuracy was lower
when a target was present (93.8%) than when it was not (96%), and
lower when feature dimension was shared with the nontarget (94%),
than when it was not (95.8%). Target presence and feature dimension
showed a marginal interaction, F(1, 23)= 2.95, MSE=0.001, p < .1,
ηp

2 =0.11, suggesting that the dimension effect might have been
slightly more pronounced when a target was absent (2.4%) than when it
was present (1.1%). GABA did not have a main effect (F < 1) and was
not involved in any interaction (F’s < 1.1).

Reaction times in the visual search task are shown in the bottom
panel of Fig. 4. Once again, effects of target presence, F(1, 23)= 15.01,
MSE=1178.686, p < .001, ηp

2 =0.4, and feature dimension, F(1,
23)= 79.24, MSE=121.502, p < .001, ηp

2 =0.78, were obtained.
Participants responded faster to target-present trials (348ms) than to
target-absent ones (367ms). Different feature dimension trials also re-
sulted in faster responses (351ms) than shared dimension ones
(365ms), as expected. The two stimulus variables also interacted, F(1,
23)= 9.79, MSE=144.379, p < .005, ηp

2 =0.3: The dimensional ef-
fect was larger when the target was absent (20ms) than when it was
present (9 ms). Neither the main effect (F < 1) nor any interaction
involving GABA was significant (F’s < 1.8).

3.3. Mood, arousal, and heart rate

Mood, arousal and heart rate were significantly affected by time F(2,
92)= 9.1, MSE=1.03, p < .001, F(1.73, 79.6)= 8.84, MSE=1.65,
p < .001, and F(1.7, 78.16)= 42.59, MSE=51.82 p < .001, respec-
tively. Importantly, there was no significant interaction effect between
time and treatment for all three measures (F’s < 1.1). Table 1 provides
an overview of all measurements across all time points.

4. Discussion

The present study provides evidence that oral ingestion of 800mg of
GABA can improve attentional performance, compared to a placebo
condition, in the absence of arousal- and/or mood-related effects.
Through an interaction between Lag and GABA condition, an
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attenuation of the AB deficit at Lag 3 was apparent, although a direct
comparison of the means was unreliable. There was furthermore a
significant decrease in order errors at Lag 1. Notably, temporal in-
tegration rates at Lag 1 were unaffected. Spatial attention, as measured
in the visual search task, also appeared insensitive to GABA, both in
terms of reaction time and response accuracy. The effects of GABA thus
seemed limited to temporal attention only.

In line with previous research, our findings thus support the notion
that the inhibitory neurotransmitter GABA plays an important role in
the regulation of attention (Paine et al., 2011). The currently observed
role of GABA in temporal attention fits with the recent observation of a
negative relationship between GABA levels in the right prefrontal
cortex and the size of the AB (Kihara, Kondo, & Kawahara, 2016). It also
fits with the hypothesis that excessive attention directed to T1 identi-
fication, possibly due to lower levels of inhibition, leads to a larger AB
(Martens & Wyble, 2010). When this overinvestment in target identi-
fication is diminished by increased inhibition due to higher GABA le-
vels, attentional performance might improve, and this prediction is
supported by our data. Thus, when targets succeed in close temporal
proximity, as in the Lag 3 condition, GABA may act to suppress the
excessive deployment of attention towards the identification of the first
target and may thereby promote the redistribution of attentional re-
sources to the identification of the second.

It is interesting to note that we found evidence for a role of GABA in
the identification and the sequencing of targets but not in target in-
tegration. The integration of target-related information across time
(i.e., temporal integration) is one form of sensory integration, which
also includes the matching of input from different modalities, and at a

different level, also the combination of different features within-mod-
ality (e.g., shape and color). Past studies have shown that a deficit in
GABA can cause disruptions in both attentional and sensory integration
processes, which have also been observed in psychiatric disorders
(Paine, Cooke, & Lowes, 2015). For example, schizophrenia is asso-
ciated with GABAergic abnormalities (Lewis, Hashimoto, & Volk,
2005), and a key symptom of schizophrenia is the experience of hal-
lucinations, which has been attributed to a pathological over-integra-
tion of sensory stimuli (Talpos, Riordan, Olley, Waddell, & Steckler,
2015). More specifically, diminished GABA levels are thought to reduce
evoked gamma oscillations and in turn, to minimize neural synchrony,
resulting in abnormally frequent integration of sensory input (Paine,
Slipp & Carlezon Jr, 2011). Coincidentally, schizophrenia patients also
tend to have increased AB magnitude (Li et al., 2002). Although only
correlational in nature, these studies underline the possible impact of
GABA concentrations on (visual) integration processes. In the present
study, however, integration was unaffected (perhaps because the cur-
rent dosage was too small), precluding an interpretation in terms of
integration-related processes.

The decrease in order errors at Lag 1 may therefore rather originate
from altered attentional dynamics. One mechanism that has been pro-
posed to cause order errors at Lag 1 is precedence or prior entry
(Olivers, Hilkenmeier, & Scharlau, 2011; Reeves & Sperling, 1986; see
also Shore, Spence, & Klein, 2001; Titchener, 1908; Vibell, Klinge,
Zampini, Spence, & Nobre, 2007), by which a stimulus that is more
strongly attended to also appears to have occurred earlier in time. Ac-
cording to at least one theory (Olivers & Meeter, 2008), the onset of T1
might trigger an attentional boost, in an attempt to enhance the

Fig. 3. Performance in the rapid serial visual
presentation task as a function of the lag between
targets. The top left panel shows the identification
accuracy of T1 (% correct). The top right panel
shows the identification accuracy of T2 (% cor-
rect), given that T1 was identified correctly. The
bottom left panel shows the frequency (%) of
trials in which the integration of both targets was
reported. The bottom right panel shows the fre-
quency (%) at which the two targets were re-
ported correctly, but in reversed order. Black
symbols represent the placebo condition and
white symbols the GABA condition. Error bars
represent ± 1 standard error of the mean.
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perception of that target, but which lags by about 100ms, thereby ar-
riving in time only for the Lag 1 item—in this case T2. Because T2 thus
enjoys attentional priority, it is reported first, with an order error re-
sulting. A reduced tendency to invest attention into T1, as might result
from GABA consumption, could thereby lessen the delayed boost effect
on T2, and diminish the frequency at which order errors occur.

This attentional account of the order effect at Lag 1 might seem
paradoxical with regard to the overall performance level, because
target identification rates at Lag 1 were relatively low. As has been
observed previously, our version of the RSVP task does not produce Lag
1 sparing, where performance is higher than would be expected at short
lag (Visser et al., 1999), even though close variants of the task can do so
(Akyürek et al., 2012). The AB is thus in full effect at this lag. The

decrease in order errors does help performance at Lag 1, but the effect is
too small to counter the blink deficit. This may reflect a late locus of the
GABA effect, such that the detection and identification of T1 are not
affected, but rather the consolidation in working memory. By the time
consolidation is underway, a T2 presented at Lag 1 may already have
gone by. Thereby GABA would only affect later blink lags, such as the
current Lag 3. There is prior ERP evidence that the AB is related to a
bottleneck in working memory consolidation (Akyürek, Leszczyński, &
Schubö, 2010; Vogel, Luck, & Shapiro, 1998). It would be interesting to
examine this interpretation in more detail by looking at the amplitude
of ERP components related to attention and working memory, such as
the N2pc and P3, as a function of GABA consumption.

Another important observation from our study is that GABA affected
temporal, but not spatial attention. Results from the animal study by
Petersen et al. (1987) showed that manipulations of GABA levels in a
specific region of the brain (i.e., the pulvinar nucleus) altered perfor-
mance in a cued visual attention task. The authors found that GABA
agonists (i.e., functional enhancers) led to a slowing of attention
shifting towards the contralateral direction while GABA antagonists
(i.e., functional inhibitors) elicited the opposite effect: Shifting of at-
tention to the contralateral visual field was more rapidly accomplished.
This modulation suggests that visual search performance in the current
study should also have been modulated by GABA in the present study
(positively or negatively), but this was not observed.

One possible explanation for this lack of an effect is that although
GABA plays a general role in the responsiveness of cortical neurons to
visual stimuli (e.g., Katzner et al., 2011), it may play a more important
role in the maintenance than in the encoding of spatial memories
(Cullen, Dulka, Ortiz, Riccio, & Jasnow, 2014). This may have con-
tributed to our finding that GABA intake did not affect performance in
the visual search task, because responses to the stimuli had to be given
immediately, so that performance did not rely on memory maintenance.
Conversely, in the RSVP task, due to the ongoing masking caused by the
distractor stream, and the fact that responses had to be delayed until the
prompts appeared, memory effects might have had more opportunity to
contribute.

Alternatively, it is possible that the temporal attention task poses a
more difficult perceptual task, requiring rapid feature identification and
segregation in the context of an ongoing stream of irrelevant items.
Kolasinski et al. (2017) proposed that levels of cortical GABAergic tone
may specifically affect perceptual performance when more complex
processing is required. Interestingly, in the task used by Kolasinski and
colleagues, a (tactile) temporal order judgment was used as a perfor-
mance measure. In the current task, even though an explicit order
judgment was not asked for, a spontaneous reduction in order errors
was observed after GABA ingestion—similarly to our present findings.
The currently observed modulation of T2 identification accuracy that
seemed to occur at Lag 3 specifically could also be viewed as another
case in which maximal demands were placed on the observers, which
would fit with the difficulty hypothesis of Kolasinski et al. (2017).

Finally, it must be noted that there is in general much controversy in
the literature regarding the effects of oral GABA intake (Boonstra et al.,
2015). Different experimental methodologies and GABA administration
methods have led to uncertainties as to whether an oral dose of GABA
can succeed in crossing the blood-brain barrier, a semipermeable

Fig. 4. Performance in the visual search task, plotted for each of the target presence and
nontarget feature dimension conditions. The top panel shows response accuracy (%
correct), and the bottom panel shows reaction time (ms).

Table 1
Mean and standard deviation of mood, arousal and heart beats per minute at all time points for both treatment conditions.

Before treatment After treatment End of experiment

GABA Placebo GABA Placebo GABA Placebo

Mood 1.13 (SD 1.51) 1.08 (SD 1.53) 2.13 (SD 1.23) 1.79 (SD 1.18) 1.29 (SD 1.4) 1.38 (SD 1.44)
Arousal −0.5 (SD 1.72) −1.04 (SD 1.73) −0.79 (SD 1.02) −0.63 (SD 1.41) −1.5 (SD 1.32) −1.75 (SD 1.48)
Heart rate 85 (SD 14) 80 (SD 13) 78 (SD 11) 72 (SD 10) 73 (SD 10) 68 (SD 10)
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membrane that separates the circulating blood from the brain par-
enchyma, and permitting only small molecules to pass through. The
blood-brain barrier protects the brain from particles, toxins and ion
abnormalities absorbed by our blood through ingestion; a barrier which
might thereby well block GABA as well. In this context it should be
acknowledged that cognitive effects of GABA intake might also be
mediated by its ability to increase the secretion of growth hormone
(GH) from the pituitary gland (Müller, Locatelli, & Cocchi, 1999),
which is not protected by the blood-brain barrier. Although evidence of
acute effects is limited, GH deficits in patients have been related to
impairments in certain cognitive functions (Falleti, Maruff, Burman, &
Harris, 2006), suggesting an indirect, alternate route by which orally
ingested GABA might act.

However, in view of the compatibility with earlier results
(Steenbergen et al., 2015a, 2015b), the present findings do give further
credence to the idea that oral ingestion does allow GABA to reach the
brain and exert direct effects on cognition, which in the present case
were specific to temporal attention. The beneficial nature of these ef-
fects furthermore suggests that GABA levels in the brain did not reach a
level high enough to become suboptimal through an excess of func-
tional inhibition (Pezze et al., 2014). The current study could therefore
serve to encourage further research on the cognitive effects of GABA
consumption and studies on the possibilities provided by GABA-based
cognitive enhancement.
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