13 research outputs found

    Membrane active chelators as novel anti-African trypanosome and anti-malarial drugs

    Get PDF
    AbstractMalaria (Plasmodium spp.) and human African trypanosomiasis (Trypanosoma brucei spp.) are vector borne, deadly parasitic diseases. While chemotherapeutic agents for both diseases are available, difficulty in disease eradication and development of drug resistance require that new therapies targeting unexplored pathways or exploiting novel modes of action be developed. Intracellular Plasmodium and extracellular Trypanosoma brucei may have unique and essential requirements for divalent metal ions, beyond that deemed physiological for the host. Membrane Active Chelators (MACs), biologically active only in a hydrophobic lipid environment, are able to bind metal ions at elevated non-physiological concentrations in the vicinity of cell membranes. A dose–response relationship study using validated viability assays revealed that two MAC drugs, DP-b99 and DP-460, were cytotoxic for these parasites in vitro. The 50% effective concentration (EC50) values for DP-b99 and DP-460 were 87μM and 39μM for Trypanosoma brucei brucei and 21μM and 28μM for erythrocytic Plasmodium falciparum, respectively. Furthermore, drug potency was maintained for at least 24h in serum containing medium at 37°C. While the exact mechanism of action of MACs against intracellular malaria and extracellular African trypanosome parasites has yet to be determined, their potential as antiparasitic agents warrants further investigation

    Inhibition of Protein-protein Interactions in Mycobacterium tuberculosis

    Get PDF
    Tuberculosis is a highly contagious, infectious disease that kills about 1.8 million people annually. Current chemotherapeutic regimens are both inefficient and taxing to the patient. In addition, the disease has suboptimal treatment due to the rise of multidrug resistant strains of Mycobacterium tuberculosis (Mtb), the causative bacterial agent of tuberculosis. Therefore, we established a critical assay to identify novel drugs that interfere with specific Mtb virulence mechanisms. The mycobacterial protein fragment complementation (M-PFC) assay was developed to screen 725 compound drug panel to find candidate drugs that interfered with important virulence-causing protein interactions of Mtb. We targeted the EsxA EsxB and EsxMEsxN interactions of the type VII secretion systems of Mtb. Our screen identified 46 small molecules that inhibited both virulence interactions, exhibiting nonspecific activity against a model cell line in vitro as well as seven hits specific to one of the two cell lines. In the future, we hope to retest the seven unique positive hits to confirm their ability to inhibit specific proteinprotein interactions of Mtb

    Clinically relevant atovaquone-resistant human malaria parasites fail to transmit by mosquito.

    Get PDF
    Long-acting injectable medications, such as atovaquone, offer the prospect of a "chemical vaccine" for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b, a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia (Anopheles stephensi) or Africa (An. gambiae). Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field

    Long-acting injectable atovaquone nanomedicines for malaria prophylaxis

    No full text
    Chemoprophylaxis is currently the best available prevention from malaria, but its efficacy is compromised by non-adherence to medication. Here we develop a long-acting injectable formulation of atovaquone solid drug nanoparticles that confers long-lived prophylaxis against Plasmodium berghei ANKA malaria in C57BL/6 mice. Protection is obtained at plasma concentrations above 200 ng ml-1 and is causal, attributable to drug activity against liver stage parasites. Parasites that appear after subtherapeutic doses remain atovaquone-sensitive. Pharmacokinetic–pharmacodynamic analysis indicates protection can translate to humans at clinically achievable and safe drug concentrations, potentially offering protection for at least 1 month after a single administration. These findings support the use of long-acting injectable formulations as a new approach for malaria prophylaxis in travellers and for malaria control in the field
    corecore