10 research outputs found

    Impact of Laws Aimed at Healthcare-Associated Infection Reduction: A Qualitative Study

    Get PDF
    Background: Healthcare-associated infections (HAIs) are preventable. Globally, laws aimed at reducing HAIs have been implemented. In the USA, these laws are at the federal and state levels. It is not known whether the state interventions are more effective than the federal incentives alone. Objective: The aims of this study were to explore the impact federal and state HAI laws have on state departments of health and hospital stakeholders in the USA and to explore similarities and differences in perceptions across states. Methods: A qualitative study was conducted. In 2012, we conducted semistructured interviews with key stakeholders from states with and without state-level laws to gain multiple perspectives. Interviews were transcribed and open coding was conducted. Data were analysed using content analysis and collected until theoretical saturation was achieved. Results: Ninety interviews were conducted with stakeholders from 12 states (6 states with laws and 6 states without laws). We found an increase in state-level collaboration. The publicly reported data helped hospitals benchmark and focus leaders on HAI prevention. There were concerns about the publicly reported data (eg, lack of validation and timeliness). Resource needs were also identified. No major differences were expressed by interviewees from states with and without laws. Conclusions: While we could not tease out the impact of specific interventions, increased collaboration between departments of health and their partners is occurring. Harmonisation of HAI definitions and reporting between state and federal laws would minimise reporting burden. Continued monitoring of the progress of HAI prevention is needed

    Development of a Real-Time Fluorescence PCR Assay for Rapid Detection of the Diphtheria Toxin Gene

    No full text
    We developed and evaluated a real-time fluorescence PCR assay for detecting the A and B subunits of diphtheria toxin (tox) gene. When 23 toxigenic Corynebacterium diphtheriae strains, 9 nontoxigenic C. diphtheriae strains, and 44 strains representing the diversity of pathogens and normal respiratory flora were tested, this real-time PCR assay exhibited 100% sensitivity and specificity. It allowed for the detection of both subunits of the tox gene at 750 times greater sensitivity (2 CFU) than the standard PCR (1,500 CFU). When used directly on specimens collected from patients with clinical diphtheria, one or both subunits of the tox gene were detected in 34 of 36 specimens by using the real-time PCR assay; only 9 specimens were found to be positive by standard PCR. Reamplification by standard PCR and DNA sequencing of the amplification product confirmed all real-time PCR tox-positive reactions. This real-time PCR format is a more sensitive and rapid alternative to standard PCR for detection of the tox gene in clinical material

    High Level of Sequence Diversity in the 16S rRNA Genes of Haemophilus influenzae Isolates Is Useful for Molecular Subtyping

    No full text
    A molecular typing method based on the 16S rRNA sequence diversity was developed for Haemophilus influenzae isolates. A total of 330 H. influenzae isolates were analyzed, representing a diverse collection of U.S. isolates. We found a high level of 16S rRNA sequence heterogeneity (up to 2.73%) and observed an exclusive correlation between 16S types and serotypes (a to f); no 16S type was found in more than one serotype. Similarly, no multilocus sequence typing (MLST) sequence type (ST) was found in more than one serotype. Our 16S typing and MLST results are in agreement with those of previous studies showing that serotypable H. influenzae isolates behave as highly clonal populations and emphasize the lack of clonality of nontypable (NT) H. influenzae isolates. There was not a 1:1 correlation between 16S types and STs, but all H. influenzae serotypable isolates clustered similarly. This correlation was not observed for NT H. influenzae; the two methods clustered NT H. influenzae isolates differently. 16S rRNA gene sequencing alone provides a level of discrimination similar to that obtained with the analysis of seven genes for MLST. We demonstrated that 16S typing is an additional and complementary approach to MLST, particularly for NT H. influenzae isolates, and is potentially useful for outbreak investigation

    Use of Real-Time PCR To Resolve Slide Agglutination Discrepancies in Serogroup Identification of Neisseria meningitidis

    No full text
    Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia in children and young adults in the United States. Rapid and reliable identification of N. meningitidis serogroups is crucial for judicious and expedient response to cases of meningococcal disease, including decisions about vaccination campaigns. From 1997 to 2002, 1,298 N. meningitidis isolates, collected in the United States through the Active Bacterial Core surveillance (ABCs), were tested by slide agglutination serogrouping (SASG) at both the ABCs sites and the Centers for Disease Control and Prevention (CDC). For over 95% of isolates, SASG results were concordant, while discrepant results were reported for 58 isolates. To resolve these discrepancies, we repeated the SASG in a blinded fashion and employed ctrA and six serogroup-specific PCR assays (SGS-PCR) to determine the genetic capsule type. Seventy-eight percent of discrepancies were resolved, since results of the SGS-PCR and SASG blinded study agreed with each other and confirmed the SASG result at either state health laboratories or CDC. This study demonstrated the ability of SGS-PCR to efficiently resolve SASG discrepancies and identified the main cause of the discrepancies as overreporting of these isolates as nongroupable. It also reemphasized the importance of adherence to quality assurance procedures when performing SASG and prompted prospective monitoring for SASG discrepancies involving isolates collected through ABCs in the United States

    Analysis of Genetic Relatedness of Haemophilus influenzae Isolates by Multilocus Sequence Typing▿ †

    No full text
    The gram-negative bacterium Haemophilus influenzae is a human-restricted commensal of the nasopharynx that can also be associated with disease. The majority of H. influenzae respiratory isolates lack the genes for capsule production and are nontypeable (NTHI). Whereas encapsulated strains are known to belong to serotype-specific phylogenetic groups, the structure of the NTHI population has not been previously described. A total of 656 H. influenzae strains, including 322 NTHI strains, have been typed by multilocus sequence typing and found to have 359 sequence types (ST). We performed maximum-parsimony analysis of the 359 sequences and calculated the majority-rule consensus of 4,545 resulting equally most parsimonious trees. Eleven clades were identified, consisting of six or more ST on a branch that was present in 100% of trees. Two additional clades were defined by branches present in 91% and 82% of trees, respectively. Of these 13 clades, 8 consisted predominantly of NTHI strains, three were serotype specific, and 2 contained distinct NTHI-specific and serotype-specific clusters of strains. Sixty percent of NTHI strains have ST within one of the 13 clades, and eBURST analysis identified an additional phylogenetic group that contained 20% of NTHI strains. There was concordant clustering of certain metabolic reactions and putative virulence loci but not of disease source or geographic origin. We conclude that well-defined phylogenetic groups of NTHI strains exist and that these groups differ in genetic content. These observations will provide a framework for further study of the effect of genetic diversity on the interaction of NTHI with the host

    Specific, Sensitive, and Quantitative Enzyme-Linked Immunosorbent Assay for Human Immunoglobulin G Antibodies to Anthrax Toxin Protective Antigen

    Get PDF
    The bioterrorism-associated human anthrax epidemic in the fall of 2001 highlighted the need for a sensitive, reproducible, and specific laboratory test for the confirmatory diagnosis of human anthrax. The Centers for Disease Control and Prevention developed, optimized, and rapidly qualified an enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) antibodies to Bacillus anthracis protective antigen (PA) in human serum. The qualified ELISA had a minimum detection limit of 0.06 µg/mL, a reliable lower limit of detection of 0.09 µg/mL, and a lower limit of quantification in undiluted serum specimens of 3.0 µg/mL anti-PA IgG. The diagnostic sensitivity of the assay was 97.8%, and the diagnostic specificity was 94.2%. A competitive inhibition anti-PA IgG ELISA was also developed to enhance diagnostic specificity to 100%. The anti-PA ELISAs proved valuable for the confirmation of cases of cutaneous and inhalational anthrax and evaluation of patients in whom the diagnosis of anthrax was being considered
    corecore