23 research outputs found

    Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development

    Get PDF
    Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals

    A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems

    Get PDF
    The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly

    Development of a post-mitotic, neuronal-astrocytic cell system, for the prediction of acute neurotoxicity in humans

    No full text
    The human NT2.D1 cell line was differentiated to form both a 1:2 co-culture of post-mitotic NT2 neuronal and NT2 astrocytic (NT2.N/A) cells and a pure NT2.N culture. The respective sensitivities to several test chemicals of the NT2.N/A, the NT2.N, and the NT2.D1 cells were evaluated and compared with the CCF-STTG1 astrocytoma cell line, using a combination of basal cytotoxicity and biochemical endpoints. Using the MTT assay, the basal cytotoxicity data estimated the comparative toxicities of the test chemicals (chronic neurotoxin 2,5-hexanedione, cytotoxins 2,3- and 3,4-hexanedione and acute neurotoxins tributyltin- and trimethyltin- chloride) and also provided the non-cytotoxic concentration-range for each compound. Biochemical endpoints examined over the non-cytotoxic range included assays for ATP levels, oxidative status (H2O2 and GSH levels) and caspase-3 levels as an indicator of apoptosis. although the endpoints did not demonstrate the known neurotoxicants to be consistently more toxic to the cell systems with the greatest number of neuronal properties, the NT2 astrocytes appeared to contribute positively to NT2 neuronal health following exposure to all the test chemicals. The NT2.N/A co-culture generally maintained superior ATP and GSH levels and reduced H2O2 levels in comparison with the NT2.N mono-culture. In addition, the pure NT2.N culture showed a significantly lower level of caspase-3 activation compared with the co-culture, suggesting NT2 astrocytes may be important in modulating the mode of cell death following toxic insult. Overall, these studies provide evidence that an in vitro integrated population of post-mitotic human neurons and astrocytes may offer significant relevance to the human in vivo heterogeneous nervous system, when initially screening compounds for acute neurotoxic potential.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Development of a post-mitotic, neuronal-astrocytic cell system, for the prediction of acute neurotoxicity in humans

    Get PDF
    The human NT2.D1 cell line was differentiated to form both a 1:2 co-culture of post-mitotic NT2 neuronal and NT2 astrocytic (NT2.N/A) cells and a pure NT2.N culture. The respective sensitivities to several test chemicals of the NT2.N/A, the NT2.N, and the NT2.D1 cells were evaluated and compared with the CCF-STTG1 astrocytoma cell line, using a combination of basal cytotoxicity and biochemical endpoints. Using the MTT assay, the basal cytotoxicity data estimated the comparative toxicities of the test chemicals (chronic neurotoxin 2,5-hexanedione, cytotoxins 2,3- and 3,4-hexanedione and acute neurotoxins tributyltin- and trimethyltin- chloride) and also provided the non-cytotoxic concentration-range for each compound. Biochemical endpoints examined over the non-cytotoxic range included assays for ATP levels, oxidative status (H2O2 and GSH levels) and caspase-3 levels as an indicator of apoptosis. although the endpoints did not demonstrate the known neurotoxicants to be consistently more toxic to the cell systems with the greatest number of neuronal properties, the NT2 astrocytes appeared to contribute positively to NT2 neuronal health following exposure to all the test chemicals. The NT2.N/A co-culture generally maintained superior ATP and GSH levels and reduced H2O2 levels in comparison with the NT2.N mono-culture. In addition, the pure NT2.N culture showed a significantly lower level of caspase-3 activation compared with the co-culture, suggesting NT2 astrocytes may be important in modulating the mode of cell death following toxic insult. Overall, these studies provide evidence that an in vitro integrated population of post-mitotic human neurons and astrocytes may offer significant relevance to the human in vivo heterogeneous nervous system, when initially screening compounds for acute neurotoxic potential

    Functional annotational clustering of genes enriched in NT2.D1 neurospheres following treatment with VPA.

    No full text
    <p>Metacoreâ„¢ (GeneGo) was used for this analysis using genes that were statistically significant p<0.05. Pathways with a p-value <0.05 were considered significantly modulated.</p

    Proportion of cells expressing SSEA4, Oct4, GFAP and NFM following treatment with VPA+RA and LiCl+RA measured using flow cytometry.

    No full text
    <p>Number of cells expressed as a percentage of total number of cells A) Undifferentiated NT2.D1 cells, B) RA, C) LiCl (1 mM) and D) VPA (0.5 mM). Results are shown as ±S.E.M (n = 3). p<0.05(*), p<0.01(**), p<0.001(***). p values were calculated by One-way ANOVA and corrected for multiple comparisons by Bonferroni’s multiple comparison post-test in comparison to the RA only control.</p

    Total number of cells from dissociated neurospheres following treatment with VPA+RA and LiCl+RA as a percentage of the RA treated control.

    No full text
    <p>Cell populations of dissociated neurospheres post treatment with VPA (0.5 mM) and LiCl (1.0 mM). Results are shown as ± S.E.M (n = 3). p<0.05(*), p<0.01(**), p<0.001(***). p values were calculated by One-way ANOVA and corrected for multiple comparisons by Dunnets’s post-test in comparison to the RA only control.</p

    Functional annotational clustering of genes enriched in NT2.D1 neurospheres following treatment with LiCl.

    No full text
    <p>Metacoreâ„¢ (GeneGo) was used for this analysis using genes that were statistically significant p<0.05. Pathways with a p-value <0.05 were considered significantly modulated.</p

    Venn diagram summarising the number of significantly differentially expressed genes unique and common to VPA+RA and LiCl+RA treatment (A).

    No full text
    <p>Tabulated fold change and p-value data (B) and unsupervised hierarchical cluster analysis (C) for the eleven genes found to be significantly up-regulated (red) or down-regulated (blue) in response to both to VPA and LiCl treatment.</p

    Validation of microarray data using Real Time PCR.

    No full text
    <p>Data is expressed as fold expression changes of Pou5F1, MT1G, MAPK10, NOTCH1 and NES. Results are shown as fold change ±S.E.M (n = 3). Genes with a p-value <0.05 were considered significantly modulated.</p
    corecore