11 research outputs found

    Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis

    Get PDF
    Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1(-/-) mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1(WT) or cyclin D1(KE) in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1(KE) induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1(WT) and cyclin D1(KE) to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis

    Modeling vitamin D insufficiency and moderate deficiency in adult mice via dietary cholecalciferol restriction

    No full text
    <p><b>Purpose</b>: We sought to develop and characterize a model of human vitamin D nutritional insufficiency/deficiency in the adult mouse, which could have broad utility in examining health consequences of this common condition. <b>Methods</b>: Adult mice were fed diets containing cholecalciferol contents of 0.05 IU/g, 0.25 IU/g, 0.5 IU/g or 1.5 IU/g for four months. We studied induction of steady-state vitamin D insufficiency, and its consequences on primary cholecalciferol metabolite levels, calcium homeostasis, parathyroid physiology, and bone morphology. <b>Results</b>: All diets were well tolerated, without adverse effects on body weight. Diets containing 0.05 IU/g and 0.25 IU/g cholecalciferol significantly lowered serum 25-hydroxyvitamin D levels (median 25OHD, 10.5 ng/ml, and 21.6 ng/ml, respectively), starting as early as one month following initiation of the diets, maintained through the four-month experimental period. The 0.05 IU/g diet significantly decreased 1,25-dihydroxyvitamin D (1,25OH<sub>2</sub>D) levels (median, 78 pg/ml). Despite these decreased 25OHD and 1,25OH<sub>2</sub>D levels, the diets did not alter parathyroid gland morphology or parathyroid cell proliferation. There were no statistical differences in the serum total calcium and serum PTH levels among the various dietary groups. Furthermore, the 0.05 IU/g diet did not cause any alterations in the cortical and trabecular bone morphology, as determined by microCT. <b>Conclusions</b>: The dietary manipulations yielded states of vitamin D insufficiency or modest deficiency in adult mice, with no overtly detectable impact on parathyroid and bone physiology, and calcium homeostasis. This model system may be of value to study health effects of vitamin D insufficiency/deficiency especially on extraskeletal phenotypes such as cancer susceptibility or immune function.</p

    Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis.

    Get PDF
    Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1-/- mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1WT or cyclin D1KE in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1KE induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1WT and cyclin D1KE to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis

    ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice

    Get PDF
    Chromosomal instability (CIN) in tumors is characterized by chromosomal abnormalities and an altered gene expression signature; however, the mechanism of CIN is poorly understood. CCND1 (which encodes cyclin D1) is overexpressed in human malignancies and has been shown to play a direct role in transcriptional regulation. Here, we used genome-wide ChIP sequencing and found that the DNA-bound form of cyclin D1 occupied the regulatory region of genes governing chromosomal integrity and mitochondrial biogenesis. Adding cyclin D1 back to Ccnd1–/– mouse embryonic fibroblasts resulted in CIN gene regulatory region occupancy by the DNA-bound form of cyclin D1 and induction of CIN gene expression. Furthermore, increased chromosomal aberrations, aneuploidy, and centrosome abnormalities were observed in the cyclin D1–rescued cells by spectral karyotyping and immunofluorescence. To assess cyclin D1 effects in vivo, we generated transgenic mice with acute and continuous mammary gland–targeted cyclin D1 expression. These transgenic mice presented with increased tumor prevalence and signature CIN gene profiles. Additionally, interrogation of gene expression from 2,254 human breast tumors revealed that cyclin D1 expression correlated with CIN in luminal B breast cancer. These data suggest that cyclin D1 contributes to CIN and tumorigenesis by directly regulating a transcriptional program that governs chromosomal stability

    Research gaps and opportunities in precision nutrition : an NIH workshop report

    No full text
    Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans
    corecore