1,291 research outputs found

    Algebraic Systems Biology: A Case Study for the Wnt Pathway

    Full text link
    Steady state analysis of dynamical systems for biological networks give rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here the variety is described by a polynomial system in 19 unknowns and 36 parameters. Current methods from computational algebraic geometry and combinatorics are applied to analyze this model.Comment: 24 pages, 2 figure

    Joining and decomposing reaction networks

    Full text link
    In systems and synthetic biology, much research has focused on the behavior and design of single pathways, while, more recently, experimental efforts have focused on how cross-talk (coupling two or more pathways) or inhibiting molecular function (isolating one part of the pathway) affects systems-level behavior. However, the theory for tackling these larger systems in general has lagged behind. Here, we analyze how joining networks (e.g., cross-talk) or decomposing networks (e.g., inhibition or knock-outs) affects three properties that reaction networks may possess---identifiability (recoverability of parameter values from data), steady-state invariants (relationships among species concentrations at steady state, used in model selection), and multistationarity (capacity for multiple steady states, which correspond to multiple cell decisions). Specifically, we prove results that clarify, for a network obtained by joining two smaller networks, how properties of the smaller networks can be inferred from or can imply similar properties of the original network. Our proofs use techniques from computational algebraic geometry, including elimination theory and differential algebra.Comment: 44 pages; extensive revision in response to referee comment

    Numerical algebraic geometry for model selection and its application to the life sciences

    Full text link
    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation, and model selection. These are all optimization problems, well-known to be challenging due to non-linearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data is available. Here, we consider polynomial models (e.g., mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometric structures relating models and data, and we demonstrate its utility on examples from cell signaling, synthetic biology, and epidemiology.Comment: References added, additional clarification

    Geometric combinatorics and computational molecular biology: branching polytopes for RNA sequences

    Full text link
    Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and their normal fans, have been used previously to give parametric analyses of simple models for DNA sequence alignment and RNA branching configurations. Here, we present a new computational framework, and proof-of-principle results, which give the first complete parametric analysis of the branching portion of the nearest neighbor thermodynamic model for secondary structure prediction for real RNA sequences.Comment: 17 pages, 8 figure

    Measles virus causes immunogenic cell death in human melanoma

    Get PDF
    Oncolytic viruses (OV) are promising treatments for cancer, with several currently undergoing testing in randomised clinical trials. Measles virus (MV) has not yet been tested in models of human melanoma. This study demonstrates the efficacy of MV against human melanoma. It is increasingly recognised that an essential component of therapy with OV is the recruitment of host anti-tumour immune responses, both innate and adaptive. MV-mediated melanoma cell death is an inflammatory process, causing the release of inflammatory cytokines including type-1 interferons and the potent danger signal HMGB1. Here, using human in vitro models, we demonstrate that MV enhances innate antitumour activity, and that MV-mediated melanoma cell death is capable of stimulating a melanoma-specific adaptive immune response

    Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models

    Get PDF
    Acknowledgements The authors acknowledge the contributions of Bettina Seelhorst (histological analysis), Anna Thoma (animal care), Marlene Arthur (animal dosing) and Pierre-Henri Moreau (experimental discussions). This work was supported by TauRx Therapeutics Ltd., Singapore.Peer reviewedPublisher PD

    What are the barriers to care integration for those at the advanced stages of dementia living in care homes in the UK? Health care professional perspective

    Get PDF
    yesPeople with advanced dementia are frequently bed-bound, doubly incontinent and able to speak only a few words. Many reside in care homes and may often have complex needs requiring efficient and timely response by knowledgeable and compassionate staff. The aim of this study is to improve our understanding of health care professionals’ attitudes and knowledge of the barriers to integrated care for people with advanced dementia. In-depth, interactive interviews conducted with 14 health care professionals including commissioners, care home managers, nurses and health care assistants in the UK. Barriers to care for people with advanced dementia are influenced by governmental and societal factors which contribute to challenging environments in care homes, poor morale amongst care staff and a fragmentation of health and social care at the end of life. Quality of care for people with dementia as they approach death may be improved by developing collaborative networks to foster improved relationships between health and social care services

    Impact of DNA damage repair alterations on prostate cancer progression and metastasis

    Get PDF
    Prostate cancer is among the most common diseases worldwide. Despite recent progress with treatments, patients with advanced prostate cancer have poor outcomes and there is a high unmet need in this population. Understanding molecular determinants underlying prostate cancer and the aggressive phenotype of disease can help with design of better clinical trials and improve treatments for these patients. One of the pathways often altered in advanced prostate cancer is DNA damage response (DDR), including alterations in BRCA1/2 and other homologous recombination repair (HRR) genes. Alterations in the DDR pathway are particularly prevalent in metastatic prostate cancer. In this review, we summarise the prevalence of DDR alterations in primary and advanced prostate cancer and discuss the impact of alterations in the DDR pathway on aggressive disease phenotype, prognosis and the association of germline pathogenic1 alterations in DDR genes with risk of developing prostate cancer
    corecore