77 research outputs found

    Temporal response of the tiger salamander (Ambystoma tigrinum) to 3,000 years of climatic variation

    Get PDF
    BACKGROUND: Amphibians are sensitive indicators of environmental conditions and show measurable responses, such as changes in phenology, abundance and range limits to local changes in precipitation and temperature regimes. Amphibians offer unique opportunities to study the important ecological and evolutionary implications of responses in life history characteristics to climatic change. We analyzed a late-Holocene fossil record of the Tiger Salamander (Ambystoma tigrinum) for evidence of population-level changes in body size and paedomorphosis to climatic change over the last 3000 years. RESULTS: We found a significant difference in body size index between paedomorphic and metamorphic individuals during the time interval dominated by the Medieval Warm Period. There is a consistent ratio of paedomorphic to metamorphic specimens through the entire 3000 years, demonstrating that not all life history characteristics of the population were significantly altered by changes in climate on this timescale. CONCLUSION: The fossil record of Ambystoma tigrinum we used spans an ecologically relevant timescale appropriate for understanding population and community response to projected climatic change. The population-level responses we documented are concordant with expectations based on modern environmental studies, and yield insight into population-level patterns across hundreds of generations, especially the independence of different life history characteristics. These conclusions lead us to offer general predictions about the future response of this species based on likely scenarios of climatic warming in the Rocky Mountain region

    Getting a head in hard soils: Convergent skull evolution and divergent allometric patterns explain shape variation in a highly diverse genus of pocket gophers (Thomomys)

    Get PDF
    BACKGROUND: High morphological diversity can occur in closely related animals when selection favors morphologies that are subject to intrinsic biological constraints. A good example is subterranean rodents of the genus Thomomys, one of the most taxonomically and morphologically diverse mammalian genera. Highly procumbent, tooth-digging rodent skull shapes are often geometric consequences of increased body size. Indeed, larger-bodied Thomomys species tend to inhabit harder soils. We used geometric morphometric analyses to investigate the interplay between soil hardness (the main extrinsic selection pressure on fossorial mammals) and allometry (i.e. shape change due to size change; generally considered the main intrinsic factor) on crania and humeri in this fast-evolving mammalian clade. RESULTS: Larger Thomomys species/subspecies tend to have more procumbent cranial shapes with some exceptions, including a small-bodied species inhabiting hard soils. Counter to earlier suggestions, cranial shape within Thomomys does not follow a genus-wide allometric pattern as even regional subpopulations differ in allometric slopes. In contrast, humeral shape varies less with body size and with soil hardness. Soft-soil taxa have larger humeral muscle attachment sites but retain an orthodont (non-procumbent) cranial morphology. In intermediate soils, two pairs of sister taxa diverge through differential modifications on either the humerus or the cranium. In the hardest soils, both humeral and cranial morphology are derived through large muscle attachment sites and a high degree of procumbency. CONCLUSIONS: Our results show that conflict between morphological function and intrinsic allometric patterning can quickly and differentially alter the rodent skeleton, especially the skull. In addition, we found a new case of convergent evolution of incisor procumbency among large-, medium-, and small-sized species inhabiting hard soils. This occurs through different combinations of allometric and non-allometric changes, contributing to shape diversity within the genus. The strong influence of allometry on cranial shape appears to confirm suggestions that developmental change underlies mammalian cranial shape divergences, but this requires confirmation from ontogenetic studies. Our findings illustrate how a variety of intrinsic processes, resulting in species-level convergence, could sustain a genus-level range across a variety of extrinsic environments. This might represent a mechanism for observations of genus-level niche conservation despite species extinctions in mammals. KEYWORDS: Environmental selection pressure; Evolutionary development; Heterochrony; Incisor procumbency; Parallel evolution; Principal component analysis; Repeated evolution; Subterranean nich

    Bayesian Estimation of the Timing and Severity of a Population Bottleneck from Ancient DNA

    Get PDF
    In this first application of the approximate Bayesian computation approach using the serial coalescent, we demonstrated the estimation of historical demographic parameters from ancient DNA. We estimated the timing and severity of a population bottleneck in an endemic subterranean rodent, Ctenomys sociabilis, over the last 10,000 y from two cave sites in northern Patagonia, Argentina. Understanding population bottlenecks is important in both conservation and evolutionary biology. Conservation implications include the maintenance of genetic variation, inbreeding, fixation of mildly deleterious alleles, and loss of adaptive potential. Evolutionary processes are impacted because of the influence of small populations in founder effects and speciation. We found a decrease from a female effective population size of 95,231 to less than 300 females at 2,890 y before present: a 99.7% decline. Our study demonstrates the persistence of a species depauperate in genetic diversity for at least 2,000 y and has implications for modes of speciation in the incredibly diverse rodent genus Ctenomys. Our approach shows promise for determining demographic parameters for other species with ancient and historic samples and demonstrates the power of such an approach using ancient DNA

    The Searsville Lake Site (California, USA) as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series

    Get PDF
    Cores from Searsville Lake within Stanford University’s Jasper Ridge Biological Preserve, California, USA, are examined to identify a potential GSSP for the Anthropocene: core JRBP2018-VC01B (944.5 cm-long) and tightly correlated JRBP2018-VC01A (852.5 cm-long). Spanning from 1900 CE ± 3 years to 2018 CE, a secure chronology resolved to the sub-annual level allows detailed exploration of the Holocene-Anthropocene transition. We identify the primary GSSP marker as first appearance of 239,240Pu (372–374 cm) in JRBP2018-VC01B and designate the GSSP depth as the distinct boundary between wet and dry season at 366 cm (6 cm above the first sample containing 239,240Pu) and corresponding to October-December 1948 CE. This is consistent with a lag of 1–2 years between ejection of 239,240Pu into the atmosphere and deposition. Auxiliary markers include: first appearance of 137Cs in 1958; late 20th-century decreases in δ15N; late 20th-century elevation in SCPs, Hg, Pb, and other heavy metals; and changes in abundance and presence of ostracod, algae, rotifer, and protozoan microfossils. Fossil pollen document anthropogenic landscape changes related to logging and agriculture. As part of a major university, the Searsville site has long been used for research and education, serves users locally to internationally, and is protected yet accessible for future studies and communication about the Anthropocene. PLAIN WORD SUMMARY: The Global Boundary Stratotype Section and Point (GSSP) for the proposed Anthropocene Series/Epoch is suggested to lie in sediments accumulated over the last ~120 years in Searsville Lake, Woodside, California, USA. The site fulfills all of the ideal criteria for defining and placing a GSSP. In addition, the Searsville site is particularly appropriate to mark the onset of the Anthropocene, because it was anthropogenic activities–the damming of a watershed–that created a geologic record that now preserves the very signals that can be used to recognize the Anthropocene worldwide

    Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

    Get PDF
    Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.Peer reviewe

    Making America great again requires acting on scientific knowledge.

    No full text
    corecore