26 research outputs found

    Constitutive and Inducible Innate Responses in Cells Infected by HSV-1-Derived Amplicon Vectors

    Get PDF
    Amplicons are helper-dependent herpes simplex virus type 1 (HSV-1)-based vectors that can deliver very large foreign DNA sequences and, as such, are good candidates both for gene delivery and vaccine development. However, many studies have shown that innate constitutive or induced cellular responses, elicited or activated by the entry of HSV-1 particles, can play a significant role in the control of transgenic expression and in the induction of inflammatory responses. Moreover, transgene expression from helper-free amplicon stocks is often weak and transient, depending on the particular type of infected cells, suggesting that cellular responses could be also responsible for the silencing of amplicon-mediated transgene expression. This review summarizes the current experimental evidence underlying these latter concepts, focusing on the impact on transgene expression of very-early interactions between amplicon particles and the infected cells, and speculates on possible ways to counteract the cellular protective mechanisms, thus allowing stable transgene expression without enhancement of vector toxicity

    Self-eating: Friend or foe? The emerging role of autophagy in idiopathic pulmonary fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis is the most common and severe form of idiopathic interstitial pneumonias. Despite an exponential increase in our understanding of potentially important mediators and mechanisms, the pathogenesis remains elusive, and little therapeutic progress has been made in the last few years. Mortality in 3-5 years is still 50%. Autophagy, a highly conserved homeostatic mechanism necessary for cell survival, has been recently implicated in the pathogenesis of pulmonary disorders. In this paper we aim to highlight some key issues regarding the process of autophagy and its possible association with the pathogenesis of idiopathic pulmonary fibrosis

    Increased lipocalin-2 expression in pulmonary inflammation and fibrosis

    Get PDF
    IntroductionIdiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung disease with dismal prognosis. The underlying pathogenic mechanisms are poorly understood, resulting in a lack of effective treatments. However, recurrent epithelial damage is considered critical for disease initiation and perpetuation, via the secretion of soluble factors that amplify inflammation and lead to fibroblast activation and exuberant deposition of ECM components. Lipocalin-2 (LCN2) is a neutrophil gelatinase-associated lipocalin (NGAL) that has been suggested as a biomarker of kidney damage. LCN2 has been reported to modulate innate immunity, including the recruitment of neutrophils, and to protect against bacterial infections by sequestering iron.MethodsIn silico analysis of publicly available transcriptomic datasets; ELISAs on human IPF patients' bronchoalveolar lavage fluids (BALFs); bleomycin (BLM)-induced pulmonary inflammation and fibrosis and LPS-induced acute lung injury (ALI) in mice: pulmonary function tests, histology, Q-RT-PCR, western blot, and FACS analysis.Results and discussionIncreased LCN2 mRNA expression was detected in the lung tissue of IPF patients negatively correlating with respiratory functions, as also shown for BALF LCN2 protein levels in a cohort of IPF patients. Increased Lcn2 expression was also detected upon BLM-induced pulmonary inflammation and fibrosis, especially at the acute phase correlating with neutrophilic infiltration, as well as upon LPS-induced ALI, an animal model characterized by neutrophilic infiltration. Surprisingly, and non withstanding the limitations of the study and the observed trends, Lcn2−/− mice were found to still develop BLM- or LPS-induced pulmonary inflammation and fibrosis, thus questioning a major pathogenic role for Lcn2 in mice. However, LCN2 qualifies as a surrogate biomarker of pulmonary inflammation and a possible indicator of compromised pulmonary functions, urging for larger studies

    NLRP3/Caspase-1 inflammasome activation is decreased in alveolar macrophages in patients with lung cancer.

    No full text
    Lung cancer (LC) remains the leading cause of cancer-related mortality. The interaction of cancer cells with their microenvironment, results in tumor escape or elimination. Alveolar macrophages (AMs) play a significant role in lung immunoregulation, however their role in LC has been outshined by the study of tumor associated macrophages. Inflammasomes are key components of innate immune responses and can exert either tumor-suppressive or oncogenic functions, while their role in lung cancer is largely unknown. We thus investigated the NLRP3 pathway in Bronchoalveolar Lavage derived alveolar macrophages and peripheral blood leukocytes from patients with primary lung cancer and healthy individuals. IL-1β and IL-18 secretion was significantly higher in unstimulated peripheral blood leukocytes from LC patients, while IL-1β secretion could be further increased upon NLRP3 stimulation. In contrast, in LC AMs, we observed a different profile of IL-1β secretion, characterized mainly by the impairment of IL-1β production in NLRP3 stimulated cells. AMs also exhibited an impaired TLR4/LPS pathway as shown by the reduced induction of IL-6 and TNF-α. Our results support the hypothesis of tumour induced immunosuppression in the lung microenvironment and may provide novel targets for cancer immunotherapy

    Self-Eating: Friend or Foe? The Emerging Role of Autophagy in Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis is the most common and severe form of idiopathic interstitial pneumonias. Despite an exponential increase in our understanding of potentially important mediators and mechanisms, the pathogenesis remains elusive, and little therapeutic progress has been made in the last few years. Mortality in 3–5 years is still 50%. Autophagy, a highly conserved homeostatic mechanism necessary for cell survival, has been recently implicated in the pathogenesis of pulmonary disorders. In this paper we aim to highlight some key issues regarding the process of autophagy and its possible association with the pathogenesis of idiopathic pulmonary fibrosis

    Early Transcriptome Signatures from Immunized Mouse Dendritic Cells Predict Late Vaccine-Induced T-Cell Responses

    No full text
    International audienceSystems biology offers promising approaches for identifying response-specific signatures to vaccination and assessing their predictive value. Here, we designed a modelling strategy aiming to predict the quality of late T-cell responses after vaccination from early transcriptome analysis of dendritic cells. Using standardized staining with tetramer, we first quantified antigen-specific T-cell expansion 5 to 10 days after vaccination with one of a set of 41 different vaccine vectors all expressing the same antigen. Hierarchical clustering of the responses defined sets of high and low T cell response inducers. We then compared these responses with the transcriptome of splenic dendritic cells obtained 6 hours after vaccination with the same vectors and produced a random forest model capable of predicting the quality of the later antigen-specific T-cell expansion. The model also successfully predicted vector classification as low or strong T-cell response inducers of a novel set of vaccine vectors, based on the early transcriptome results obtained from spleen dendritic cells, whole spleen and even peripheral blood mononuclear cells. Finally, our model developed with mouse datasets also accurately predicted vaccine efficacy from literature-mined human datasets
    corecore