3 research outputs found

    Blooming of Smectic Surfactant/Plasticizer Layers on Spin-Cast Poly(vinyl alcohol) Films

    Get PDF
    The blooming of sodium dodecyl sulfate (SDS) and the influence of plasticizer (glycerol) on the surfactant distribution in poly(vinyl alcohol) (PVA) films have been explored by neutron reflectometry (NR) and ion beam analysis techniques. When in binary films with PVA, deuterated SDS (d25-SDS) forms a surface excess corresponding to a wetting layer of the surfactant molecules at the film surface. The magnitude of this surface excess increased significantly in the presence of the plasticizer, and the surfactant was largely excluded from the PVA subphase. NR revealed smectic nanostructures for both SDS and glycerol components within this surface excess in plasticized films. This combined layer comprises surfactant lamellae, separated by interstitial glycerol-rich layers, which is only formed in the plasticized films and persists throughout the surface excess. Atomic force microscopy micrographs of the film surfaces revealed platelike structures in the plasticized PVA, which were consistent with the rigid defects in the surfactant-rich lamellae. The formation of these structures arises from the synergistic surface segregation of SDS and glycerol, evidenced by surface tensiometry. Cloud point analysis of bulk samples indicates a transition at ∼55% water content, below which phase separation occurs in ternary films. This transition is likely to be necessary to form the thick wetting layer observed and therefore indicates that film components remain mobile beyond this point in the drying process
    corecore