162 research outputs found

    Ammonium thiosulphate assisted phytoextraction of mercury and arsenic in multi-polluted industrial soil

    Get PDF
    The possibility of using ammonium thiosulphate in assisted phytoextraction was evaluated on a greenhouse scale (mesocosm) for the simultaneous removal of mercury and arsenic from multi-polluted industrial soil. The addition of thiosulphate to the soil greatly promoted the uptake and translocation of both contaminants in the aerial parts of Brassica juncea and Lupinus albus. Thiosulphate showed great potential since it is a common fertilizer used to promote plant growth and is able to promote plant uptake of both Hg and As. Hg concentration in the aerial part of the plants reached 867 mg kg-1 in B. juncea and 114 mg kg-1 in L. albus. In the aerial parts, As concentration was about 9 mg kg-1 in B. juncea and 20 mg kg-1 in L. albus. This thus increases the applicability of phytoextraction in terms of cost and time especially if the remedial targets are based on bioavailable metal concentrations

    Development of a Prediction Model for Short-Term Success of Functional Treatment of Class II Malocclusion

    Get PDF
    (1) Background: The nature of the changes that contribute to Class II correction with functional appliances is still controversial. A broad variation in treatment responses has been reported. The purpose of this study was to find cephalometric predictors for individual patient responsiveness to twin-block treatment in patients with Class II Division 1 malocclusion; (2) Methods: The study was performed on a sample of 39 pubertal patients (21 females, 18 males) treated with the twin block appliance. Lateral cephalograms were available at the start of the treatment (T1) and at the end of functional therapy (T2). The outcome variable was the T2-T1 change in the sagittal position of the soft tissue pogonion with respect to the vertical line perpendicular to the Frankfort plane and passing through point subnasale. The predictive variables were age, gender at T1, and all the cephalometric parameters measured T1. Forward stepwise linear regression withpvalue to enter 0.05 andpvalue to leave 0.10 was applied; (3) Results: The only significant predictive variable that was selected was the Co-Go-Me angle (p= 0.000); (4) Conclusions: A greater advancement of the soft tissue chin on the profile is expected with smaller pretreatment values of Co-Go-Me angle

    Losartan counteracts the hyper-reactivity to angiotensin II and ROCK1 over-activation in aortas isolated from streptozotocin-injected diabetic rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In streptozotocin-injected rats (STZ-rats), we previously demonstrated a role for angiotensin II (AT-II) in cardiac remodelling and insulin resistance partially counteracted by <it>in vivo </it>treatment with losartan, an AT-II receptor antagonist.</p> <p>We now aimed to investigate the effect of treating diabetic STZ-rats with losartan on diabetes vascular response to vasoconstrictors.</p> <p>Methods</p> <p>Male Wistar rats were randomly divided in four groups, two of them were assigned to receive losartan in the drinking water (20 mg/kg/day) until the experiment ending (3 weeks afterward). After 1 week, two groups, one of which receiving losartan, were injected in the tail vein with citrate buffer (normoglycemic, N and normoglycemic, losartan-treated, NL). The remaining received a single injection of streptozotocin (50 mg/kg in citrate i.v.) thus becoming diabetic (D) and diabetic losartan-treated (DL). Plasma glycaemia and blood pressure were measured in all animals before the sacrifice (15 days after diabetes induction).</p> <p>In aortic strips isolated from N, NL, D and DL rats we evaluated i) the isometric concentration-dependent contractile response to phenylephrine (Phe) and to AT-II; ii) the RhoA-kinase (ROCK1) activity and expression by enzyme-immunoassay and Western blot respectively.</p> <p>Key results</p> <p>The concentration-dependent contractile effect of Phe was similar in aortas from all groups, whereas at all concentrations tested, AT-II contraction efficacy was 2 and half and 1 and half times higher in D and DL respectively in comparison with N and NL. AT-II contracture was similarly reduced in all groups by AT-II receptor antagonists, irbesartan or irbesartan plus PD123319. HA-1077 (10 μM), an inhibitor of ROCK1 activity, reduced AT-II efficacy (Δmg/mg tissue w.w.) by -3.5 ± 1.0, -4.6 ± 1.9, -22.1 ± 2.2 and -11.4 ± 1.3 in N, NL, D and DL respectively). ROCK1 activity and expression were higher in D than in N/NL and DL aortas.</p> <p>Conclusion and implications</p> <p>Aortas isolated from STZ-rats present hyper-contracture to AT-II mainly dependent on the up-regulation of ROCK1 expression/activity. In vivo losartan treatment partially corrects AT-II hyper-contracture, limiting the increase in ROCK1 expression/activity. These data offer a new molecular mechanism supporting the rationale for using losartan in the prevention of diabetic vascular complications.</p

    Soil Remediation: Towards a Resilient and Adaptive Approach to Deal with the Ever-Changing Environmental Challenges

    Get PDF
    Pollution from numerous contaminants due to many anthropogenic activities affects soils quality. Industrialized countries have many contaminated sites; their remediation is a priority in environmental legislation. The aim of this overview is to consider the evolution of soil remediation from consolidated invasive technologies to environmentally friendly green strategies. The selection of technology is no longer exclusively based on eliminating the source of pollution but aims at remediation, which includes the recovery of soil quality. \u201cGreen remediation\u201d appears to be the key to addressing the issue of remediation of contaminated sites as it focuses on environmental quality, including the preservation of the environment. Further developments in green remediation reflect the aim of promoting clean-up strategies that also address the effects of climate change. Sustainable and resilient remediation faces the environmental challenge of achieving targets while reducing the environmental damage caused by clean-up interventions and must involve an awareness that social systems and environmental systems are closely connected

    Diverse plant promoting bacterial species differentially improve tomato plant fitness under water stress

    Get PDF
    IntroductionFood crops are increasingly susceptible to the challenging impacts of climate change, encompassing both abiotic and biotic stresses, that cause yield losses. Root-associated microorganisms, including plant growth-promoting bacteria (PGPB), can improve plant growth as well as plant tolerance to environmental stresses. The aims of this work were to characterize bacteria isolated from soil and roots of tomato plants grown in open field.MethodsBiochemical and molecular analyses were used to evaluate the PGP potential of the considered strains on tomato plants in controlled conditions, also assessing their effects under a water deficit condition. The isolated strains were classified by 16S gene sequencing and exhibited typical features of PGPB, such as the release of siderophores, the production of proteases, and phosphorous solubilization. Inoculating tomato plants with eleven selected strains led to the identification of potentially interesting strains that increased shoot height and dry weight. Three strains were then selected for the experiment under water deficit in controlled conditions. The tomato plants were monitored from biometric and physiological point of view, and the effect of inoculation at molecular level was verified with a targeted RT-qPCR based approach on genes that play a role under water deficit condition.ResultsResults revealed the PGP potential of different bacterial isolates in tomato plants, both in well-watered and stressed conditions. The used integrated approach allowed to obtain a broader picture of the plant status, from biometric, eco-physiological and molecular point of view. Gene expression analysis showed a different regulation of genes involved in pathways related to abscisic acid, osmoprotectant compounds and heat shock proteins, depending on the treatments. DiscussionOverall, results showed significant changes in tomato plants due to the bacterial inoculation, also under water deficit, that hold promise for future field applications of these bacterial strains, suggesting that a synergistic and complementary interaction between diverse PGPB is an important point to be considered for their exploitation

    Oral Microbiome Dysbiosis Is Associated With Symptoms Severity and Local Immune/Inflammatory Response in COVID-19 Patients: A Cross-Sectional Study

    Get PDF
    The human oral microbiome (HOM) is the second largest microbial community after the gut and can impact the onset and progression of several localized and systemic diseases, including those of viral origin, especially for viruses entering the body via the oropharynx. However, this important aspect has not been clarified for the new pandemic human coronavirus SARS-CoV-2, causing COVID-19 disease, despite it being one of the many respiratory viruses having the oropharynx as the primary site of replication. In particular, no data are available about the non-bacterial components of the HOM (fungi, viruses), which instead has been shown to be crucial for other diseases. Consistent with this, this study aimed to define the HOM in COVID-19 patients, to evidence any association between its profile and the clinical disease. Seventy-five oral rinse samples were analyzed by Whole Genome Sequencing (WGS) to simultaneously identify oral bacteria, fungi, and viruses. To correlate the HOM profile with local virus replication, the SARS-CoV-2 amount in the oral cavity was quantified by digital droplet PCR. Moreover, local inflammation and secretory immune response were also assessed, respectively by measuring the local release of pro-inflammatory cytokines (L-6, IL-17, TNFα, and GM-CSF) and the production of secretory immunoglobulins A (sIgA). The results showed the presence of oral dysbiosis in COVID-19 patients compared to matched controls, with significantly decreased alpha-diversity value and lower species richness in COVID-19 subjects. Notably, oral dysbiosis correlated with symptom severity (p = 0.006), and increased local inflammation (p &lt; 0.01). In parallel, a decreased mucosal sIgA response was observed in more severely symptomatic patients (p = 0.02), suggesting that local immune response is important in the early control of virus infection and that its correct development is influenced by the HOM profile. In conclusion, the data presented here suggest that the HOM profile may be important in defining the individual susceptibility to SARS-CoV-2 infection, facilitating inflammation and virus replication, or rather, inducing a protective IgA response. Although it is not possible to determine whether the alteration in the microbial community is the cause or effect of the SARS-CoV-2 replication, these parameters may be considered as markers for personalized therapy and vaccine development
    • …
    corecore