216 research outputs found

    Leccese sheep breed from Apulia: evidence of genetic substructuring from STR loci

    Get PDF
    Leccese is an originally triple-purpose sheep breed from Southern Italy. Due to major changes in rural society and livestock production, the breed has experienced in the last decades a drastic population size reduction. Nowadays roughly one thousand animals are reared in about ten farms located in Apulia. In order to evaluate the genetic variability within the Leccese breed, a total of 97 animals, sampled from five different farms in the provinces of Bari, Taranto, Brindisi, and Lecce were genotyped at 19 microsatellite loci belonging to the ISAG-FAO panel for Domestic Animal Diversity. Samples were chosen according to genealogical records in order to minimize relatedness among animals. Although being a local bottlenecked breed, the Leccese sample displayed a valuable number of alleles (187 over 19 loci, with a minimum of 4 in BM1824 and OarFCB193 and a maximum of 16 in MAF70 and MCM140). A high proportion of private alleles was observed for each farm (7.7 alleles on average). In addition, a high level of linkage disequilibrium was observed in the total sample, also among non syntenic locus pairs, suggesting the presence of population sub-structuring. To test the hypothesis of a genetic partitioning at the farm hierarchical level we first calculated the pair-wise FST between the different farms, which highlighted significant (P<0.001) though moderate values (0.055 to 0.065). Then, we performed both a likelihood-based and a Bayesian population assignment test, respectively implemented in the Arlequin and Structure software packages, in order to verify the degree of differentiation between the five farms. A correct allocation was obtained for 96.9% of animals by using the Arlequin software and 92.8% when using Structure, thus highlighting a clear genetic differentiation at the farm level, counterbalanced by a marked within-herd genetic similarity. These results suggest that reproductive isolation and/or different selection strategies across farms contributed to the observed pattern of genetic sub-structuring; this should be seriously taken into consideration, due to the critical implications for the breed conservation

    Nitric Oxide Protects Neuroblastoma Cells from Apoptosis Induced by Serum Deprivation through cAMP-response Element-binding Protein (CREB) Activation

    Get PDF
    The transcription factor cAMP-response element-binding protein (CREB) mediates survival in many cells, including neurons. Recently, death of cerebellar granule neurons due to nitric oxide (NO) deprivation was shown to be accompanied by down-regulation of CREB activity (1). We now provide evidence that overproduction of endogenous NO or supplementation with exogenous NO renders SK-N-BE human neuroblastoma cells more resistant to apoptosis induced by serum deprivation. Parental cells underwent apoptosis after 24 h of serum deprivation, an outcome largely absent in clones overexpressing human neuronal nitric oxide synthase (nNOS). This protective effect was reversed by the inhibition of NOS itself or soluble guanylyl cyclase, pointing at cGMP as an intermediate effector of NO-mediated rescue. A slow-releasing NO donor protected parental cells to a significant extent, thus confirming the survival effect of NO. The impaired viability of serum-deprived parental cells was accompanied by a strong decrease of CREB phosphorylation and transcriptional activity, effects significantly attenuated in nNOS-overexpressing clones. To confirm the role of CREB in survival, the ectopic expression of CREB and/or protein kinase A largely counteracted serum deprivation-induced cell death of SK-N-BE cells, whereas transfection with a CREB negative mutant was ineffective. These experiments indicate that CREB activity is an important step for NO-mediated survival in neuronal cells

    Haplotype recostruction from unphased genotype data at the bovine PRKAG3 gene

    Get PDF
    Haplotype analysis has became an area of intense research, both for population genetics studies and for molecular dissection of complex phenotypes. Haplotypes provide increased informativeness with respect to single nucleotide polymorphisms and allow to condense information on genomic variation, with a sensible gain of power in association studies. Direct haplotyping via molecular analysis provides more exact information per individual, but is much more expensive and labour-intensive than indirectly inferring haplotypes from genotypes. Several methods have been proposed so far to indirectly reconstruct haplotypes from unphased genotypes. In the present study, we adopted four different approaches (implemented in the computer programs ARLEQUIN, HELIXTREE, HAP and PHASE) to infer phase information from genotypic data on 197 subjects at 14 polymorphic sites of the bovine PRKAG3 gene. In the whole, twelve different haplotypes had been inferred by all the four different methods, although at slightly varying frequencies. Other three haplotypes were inferred by at least two different approaches and some haplotypes were unique to a single method. No dramatic differences among the four selected approaches were observed for the considered genomic target. This is probably due to the linkage-disequilibrium structure of the analysed region and to the moderate amount of missing genotype data

    Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder

    Get PDF
    open9noFunding: This work was supported by the Telethon foundation (grant number GGP19045 to EC), by the Italian parent associations “CDKL5 insieme verso la cura” to EC and by the CARISBO foundation (grant number 2020.0400 to ST).CDKL5 deficiency disorder (CDD), a severe neurodevelopmental disorder characterized by early onset epilepsy, intellectual disability, and autistic features, is caused by mutations in the CDKL5 gene. Evidence in animal models of CDD showed that absence of CDKL5 negatively affects neuronal survival, as well as neuronal maturation and dendritic outgrowth; however, knowledge of the substrates underlying these alterations is still limited. Neuroinflammatory processes are known to contribute to neuronal dysfunction and death. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD patients. However, to date, it is unknown whether a similar inflammatory status is present in the brain of CDD patients and, if so, whether this plays a causative or exacerbating role in the pathophysiology of CDD.openGalvani, Giuseppe; Mottolese, Nicola; Gennaccaro, Laura; Loi, Manuela; Medici, Giorgio; Tassinari, Marianna; Fuchs, Claudia; Ciani, Elisabetta; Trazzi, StefaniaGalvani, Giuseppe; Mottolese, Nicola; Gennaccaro, Laura; Loi, Manuela; Medici, Giorgio; Tassinari, Marianna; Fuchs, Claudia; Ciani, Elisabetta; Trazzi, Stefani

    Early-onset brain alterations during postnatal development in a mouse model of CDKL5 deficiency disorder

    Get PDF
    Mutations in the CDKL5 gene are the cause of CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental condition characterized by early-onset epilepsy, motor impairment, intellectual disability, and autistic features. A mouse model of CDD, the Cdkl5 KO mouse, that recapitulates several aspects of CDD symptomology, has helped to highlight brain alterations leading to CDD neurological defects. Studies of brain morphogenesis in adult Cdkl5 KO mice showed defects in dendritic arborization of pyramidal neurons and in synaptic connectivity, a hypocellularity of the hippocampal dentate gyrus, and a generalized microglia over-activation. Nevertheless, no studies are available regarding the presence of these brain alterations in Cdkl5 KO pups, and their severity in early stages of life compared to adulthood. A deeper understanding of the CDKL5 deficient brain during an early phase of postnatal development would represent an important milestone for further validation of the CDD mouse model, and for the identification of the optimum time window for treatments that target defects in brain development. In sight of this, we comparatively evaluated the dendritic arborization and spines of cortical pyramidal neurons, cortical excitatory and inhibitory connectivity, microglia activation, and proliferation and survival of granule cells of the hippocampal dentate gyrus in hemizygous Cdkl5 KO male (-/Y) mice aged 7, 14, 21, and 60 days. We found that most of the structural alterations in Cdkl5 -/Y brains are already present in pups aged 7 days and do not worsen with age. In contrast, the difference in the density of excitatory and inhibitory terminals between Cdkl5 -/Y and wild-type mice changes with age, suggesting an age-dependent cortical excitatory/inhibitory synaptic imbalance. Confirming the precocious presence of brain defects, Cdkl5 -/Y pups are characterized by an impairment in neonatal sensory-motor reflexes

    Luteolin Treatment Ameliorates Brain Development and Behavioral Performance in a Mouse Model of CDKL5 Deficiency Disorder

    Get PDF
    CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene, is characterized by early-onset epilepsy, intellectual disability, and autistic features. Although pharmacotherapy has shown promise in the CDD mouse model, safe and effective clinical treatments are still far off. Recently, we found increased microglial activation in the brain of a mouse model of CDD, the Cdkl5 KO mouse, suggesting that a neuroinflammatory state, known to be involved in brain maturation and neuronal dysfunctions, may contribute to the pathophysiology of CDD. The present study aims to evaluate the possible beneficial effect of treatment with luteolin, a natural flavonoid known to have anti-inflammatory and neuroprotective activities, on brain development and behavior in a heterozygous Cdkl5 (+/-) female mouse, the mouse model of CDD that best resembles the genetic clinical condition. We found that inhibition of neuroinflammation by chronic luteolin treatment ameliorates motor stereotypies, hyperactive profile and memory ability in Cdkl5 +/- mice. Luteolin treatment also increases hippocampal neurogenesis and improves dendritic spine maturation and dendritic arborization of hippocampal and cortical neurons. These findings show that microglia overactivation exerts a harmful action in the Cdkl5 +/- brain, suggesting that treatments aimed at counteracting the neuroinflammatory process should be considered as a promising adjuvant therapy for CDD

    Treatment with a GSK-3β/HDAC Dual Inhibitor Restores Neuronal Survival and Maturation in an In Vitro and In Vivo Model of CDKL5 Deficiency Disorder

    Get PDF
    open11noFunding: This research was funded by the Telethon foundation (grant number GGP19045, awarded to E.C.), and by the Italian parent association “CDKL5 insieme verso la cura” (to E.C.).Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene cause a rare neurodevelopmental disorder characterized by early-onset seizures and severe cognitive, motor, and visual impairments. To date there are no therapies for CDKL5 deficiency disorder (CDD). In view of the severity of the neurological phenotype of CDD patients it is widely assumed that CDKL5 may influence the activity of a variety of cellular pathways, suggesting that an approach aimed at targeting multiple cellular pathways simultaneously might be more effective for CDD. Previous findings showed that a single-target therapy aimed at normalizing impaired GSK-3β or histone deacetylase (HDAC) activity improved neurodevelopmental and cognitive alterations in a mouse model of CDD. Here we tested the ability of a first-in-class GSK-3β/HDAC dual inhibitor, Compound 11 (C11), to rescue CDD-related phenotypes. We found that C11, through inhibition of GSK-3β and HDAC6 activity, not only restored maturation, but also significantly improved survival of both human CDKL5-deficient cells and hippocampal neurons from Cdkl5 KO mice. Importantly, in vivo treatment with C11 restored synapse development, neuronal survival, and microglia over-activation, and improved motor and cognitive abilities of Cdkl5 KO mice, suggesting that dual GSK-3β/HDAC6 inhibitor therapy may have a wider therapeutic benefit in CDD patients.openLoi, Manuela; Gennaccaro, Laura; Fuchs, Claudia; Trazzi, Stefania; Medici, Giorgio; Galvani, Giuseppe; Mottolese, Nicola; Tassinari, Marianna; Giorgini, Roberto Rimondini; Milelli, Andrea; Ciani, ElisabettaLoi, Manuela; Gennaccaro, Laura; Fuchs, Claudia; Trazzi, Stefania; Medici, Giorgio; Galvani, Giuseppe; Mottolese, Nicola; Tassinari, Marianna; Giorgini, Roberto Rimondini; Milelli, Andrea; Ciani, Elisabett

    Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder

    Get PDF
    CDKL5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked CDKL5 (cyclin-dependent kinase-like five) gene. CDKL5 disorder primarily affects girls and is characterized by early-onset epileptic seizures, gross motor impairment, intellectual disability, and autistic features. Although all CDKL5 female patients are heterozygous, the most valid disease-related model, the heterozygous female Cdkl5 knockout (Cdkl5 +/-) mouse, has been little characterized. The lack of detailed behavioral profiling of this model remains a crucial gap that must be addressed in order to advance preclinical studies. Here, we provide a behavioral and molecular characterization of heterozygous Cdkl5 +/- mice. We found that Cdkl5 +/- mice reliably recapitulate several aspects of CDKL5 disorder, including autistic-like behaviors, defects in motor coordination and memory performance, and breathing abnormalities. These defects are associated with neuroanatomical alterations, such as reduced dendritic arborization and spine density of hippocampal neurons. Interestingly, Cdkl5 +/- mice show age-related alterations in protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling, two crucial signaling pathways involved in many neurodevelopmental processes. In conclusion, our study provides a comprehensive overview of neurobehavioral phenotypes of heterozygous female Cdkl5 +/- mice and demonstrates that the heterozygous female might be a valuable animal model in preclinical studies on CDKL5 disorder

    Treatment with FRAX486 rescues neurobehavioral and metabolic alterations in a female mouse model of CDKL5 deficiency disorder

    Get PDF
    Introduction: CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental condition, primarily affecting girls for which no cure currently exists. Neuronal morphogenesis and plasticity impairments as well as metabolic dysfunctions occur in CDD patients. The present study explored the potential therapeutic value for CDD of FRAX486, a brain-penetrant molecule that was reported to selectively inhibit group I p21-activated kinases (PAKs), serine/threonine kinases critically involved in the regulation of neuronal morphology and glucose homeostasis.Methods: The effects of treatment with FRAX486 on CDD-related alterations were assessed in vitro (100 nM for 48h) on primary hippocampal cultures from Cdkl5-knockout male mice (Cdkl5-KO) and in vivo (20 mg/Kg, s.c. for 5 days) on Cdkl5-KO heterozygous females (Cdkl5-Het).Results: The in vitro treatment with FRAX486 completely rescued the abnormal neuronal maturation and the number of PSD95-positive puncta in Cdkl5-KO mouse neurons. In vivo, FRAX486 normalized the general health status, the hyperactive profile and the fear learning defects of fully symptomatic Cdkl5-Het mice. Systemically, FRAX486 treatment normalized the levels of reactive oxidizing species in the whole blood and the fasting-induced hypoglycemia displayed by CdklS-Het mice. In the hippocampus of Cdkl5-Het mice, treatment with FRAX486 rescued spine maturation and PSD95 expression and restored the abnormal PAKs phosphorylation at sites which are critical for their activation (P-PAK-Ser144/141/139) or for the control cytoskeleton remodeling (P-PAK1-Thr212).Conclusions: Present results provide evidence that PAKs may represent innovative therapeutic targets for CDD
    • …
    corecore