144 research outputs found

    Incidence of late vitamin K deficiency bleeding in newborns in the Netherlands in 2005: evaluation of the current guideline

    Get PDF
    Vitamin K prophylaxis is recommended to prevent the hazard of haemorrhage caused by vitamin K deficiency in newborns. The present Dutch guideline recommends 1 mg of vitamin K1 orally at birth, followed by a daily dose of 25 μg of vitamin K1 from 1 to 13 weeks of age for breastfed infants. Since the introduction of this prophylaxis, the incidence of vitamin K deficiency bleeding (VKDB) has decreased; however, late VKDB is still reported. From 1 January to 31 December 2005, a nationwide active surveillance was performed by the Netherlands Paediatric Surveillance Unit (NSCK) to study the current incidence and aetiology of late VKDB in infants. Six cases could be validated as late VKDB: all were breastfed, one fatal idiopathic intracranial haemorrhage at the age of 5 weeks and five bleedings secondary to an underlying cholestatic liver disease between the age of 3 and 7 weeks. The total incidence of late VKDB and idiopathic late VKDB was calculated to be 3.2 (95% CI: 1.2–6.9) and 0.5 (95% CI: 0–2.9) per 100,000 live births, respectively. With the current Dutch guideline, idiopathic late VKDB is rare but late VKDB secondary to cholestasis still occurs in breastfed infants. Doubling the daily dose of vitamin K1 to 50 μg, as is comparable to formula-feeding, may possibly prevent VKDB in this group. Further research, however, is needed to prove this hypothesis

    Halitosis in cystinosis patients after administration of immediate-release cysteamine bitartrate compared to delayed-release cysteamine bitartrate

    Get PDF
    Halitosis due to dimethylsulfide (DMS) generation is a major side effect of cysteamine in the treatment of cystinosis. Recently, an enteric coated formulation of cysteamine bitartrate (RP103) administered twice daily was demonstrated to be non-inferior for lowering WBC cystine levels compared to the non-enteric coated formulation (Cystagon(R)), administered 4 times per day. Since both formulations had different pharmacokinetic profiles, we compared DMS breath levels after administration of either RP103 or Cystagon(R) in four cystinosis patients. Although cysteamine areas under the curve (AUCs) were comparable, AUC of DMS was lower after the administration of RP103 compared to Cystagon(R). This observation is of importance in cystinosis patients, since halitosis hampers compliance with cysteamine therapy. (C) 2012 Elsevier Inc. All rights reserved

    Pearls and Pitfalls in Pediatric Kidney Transplantation After 5 Decades

    Get PDF
    Worldwide, over 1,300 pediatric kidney transplantations are performed every year. Since the first transplantation in 1959, healthcare has evolved dramatically. Pre-emptive transplantations with grafts from living donors have become more common. Despite a subsequent improvement in graft survival, there are still challenges to face. This study attempts to summarize how our understanding of pediatric kidney transplantation has developed and improved since its beginnings, whilst also highlighting those areas where future research should concentrate in order to help resolve as yet unanswered questions. Existing literature was compared to our own data of 411 single-center pediatric kidney transplantations between 1968 and 2020, in order to find discrepancies and allow identification of future challenges. Important issues for future care are innovations in immunosuppressive medication, improving medication adherence, careful donor selection with regard to characteristics of both donor and recipient, improvement of surgical techniques and increased attention for lower urinary tract dysfunction and voiding behavior in all patients

    Inhibitory NKG2A<sup>+</sup> and absent activating NKG2C<sup>+</sup> NK cell responses are associated with the development of EBV<sup>+</sup> lymphomas

    Get PDF
    Epstein-Barr virus (EBV) is a ubiquitous herpesvirus, which infects over 90% of the adult human population worldwide. After primary infections, EBV is recurrently reactivating in most adult individuals. It is, however, unclear, why these EBV reactivations progress to EBV+ Hodgkin (EBV+HL) or non-Hodgkin lymphomas (EBV+nHL) only in a minority of EBV-infected individuals. The EBV LMP-1 protein encodes for a highly polymorphic peptide, which upregulates the immunomodulatory HLA-E in EBV-infected cells, thereby stimulating the inhibitory NKG2A-, but also the activating NKG2C-receptor on natural killer (NK) cells. Using a genetic-association approach and functional NK cell analyses, we now investigated, whether these HLA-E-restricted immune responses impact the development of EBV+HL and EBV+nHL. Therefore, we recruited a study cohort of 63 EBV+HL and EBV+nHL patients and 192 controls with confirmed EBV reactivations, but without lymphomas. Here, we demonstrate that in EBV+ lymphoma patients exclusively the high-affine LMP-1 GGDPHLPTL peptide variant-encoding EBV-strains reactivate. In EBV+HL and EBV+nHL patients, the high-expressing HLA-E*0103/0103 genetic variant was significantly overrepresented. Combined, the LMP-1 GGDPHLPTL and HLA-E*0103/0103 variants efficiently inhibited NKG2A+ NK cells, thereby facilitating the in vitro spread of EBV-infected tumor cells. In addition, EBV+HL and EBV+nHL patients, showed impaired pro-inflammatory NKG2C+ NK cell responses, which accelerated the in vitro EBV-infected tumor cells spread. In contrast, the blocking of NKG2A by monoclonal antibodies (Monalizumab) resulted in efficient control of EBV-infected tumor cell growth, especially by NKG2A+NKG2C+ NK cells. Thus, the HLA-E/LMP-1/NKG2A pathway and individual NKG2C+ NK cell responses are associated with the progression toward EBV+ lymphomas.</p

    A randomized clinical trial indicates that levamisole increases the time to relapse in children with steroid-sensitive idiopathic nephrotic syndrome

    Get PDF
    Levamisole has been considered the least toxic and least expensive steroid-sparing drug for preventing relapses of steroid-sensitive idiopathic nephrotic syndrome (SSINS). However, evidence for this is limited as previous randomized clinical trials were found to have methodological limitations. Therefore, we conducted an international multicenter, placebo-controlled, double-blind, randomized clinical trial to reassess its usefulness in prevention of relapses in children with SSINS. The efficacy and safety of one year of levamisole treatment in children with SSINS and frequent relapses were evaluated. The primary analysis cohort consisted of 99 patients from 6 countries. Between 100 days and 12 months after the start of study medication, the time to relapse (primary endpoint) was significantly increased in the levamisole compared to the placebo group (hazard ratio 0.22 [95% confidence interval 0.11-0.43]). Significantly, after 12 months of treatment, six percent of placebo patients versus 26 percent of levamisole patients were still in remission. During this period, the most frequent serious adverse event (four of 50 patients) possibly related to levamisole was asymptomatic moderate neutropenia, which was reversible spontaneously or after treatment discontinuation. Thus, in children with SSINS and frequent relapses, levamisole prolonged the time to relapse and also prevented recurrence during one year of treatment compared to prednisone alone. However, regular blood controls are necessary for safety issues

    Comprehensive routine diagnostic screening to identify predictive mutations, gene amplifications, and microsatellite instability in FFPE tumor material

    Get PDF
    Background: Sensitive and reliable molecular diagnostics is needed to guide therapeutic decisions for cancer patients. Although less material becomes available for testing, genetic markers are rapidly expanding. Simultaneous detection of predictive markers, including mutations, gene amplifications and MSI, will save valuable material, time and costs. Methods: Using a single-molecule molecular inversion probe (smMIP)-based targeted next-generation sequencing (NGS) approach, we developed an NGS panel allowing detection of predictive mutations in 33 genes, gene amplifications of 13 genes and microsatellite instability (MSI) by the evaluation of 55 microsatellite markers. The panel was designed to target all clinically relevant single and multiple nucleotide mutations in routinely available lung cancer, colorectal cancer, melanoma, and gastro-intestinal stromal tumor samples, but is useful for a broader set of tumor types. Results: The smMIP-based NGS panel was successfully validated and cut-off values were established for reliable gene amplification analysis (i.e. relative coverage ≥3) and MSI detection (≥30% unstable loci). After validation, 728 routine diagnostic tumor samples including a broad range of tumor types were sequenced with sufficient sensitivity (2.4% drop-out), including samples with low DNA input (< 10 ng; 88% successful), low tumor purity (5-10%; 77% successful), and cytological material (90% successful). 75% of these tumor samples showed ≥1 (likely) pathogenic mutation, including targetable mutations (e.g. EGFR, BRAF, MET, ERBB2, KIT, PDGFRA). Amplifications were observed in 5.5% of the samples, comprising clinically relevant amplifications (e.g. MET, ERBB2, FGFR1). 1.5% of the tumor samples were classified as MSI-high, including both MSI-prone and non-MSI-prone tumors. Conclusions: We developed a comprehensive workflow for predictive analysis of diagnostic tumor samples. The smMIP-based NGS analysis was shown suitable for limited amounts of histological and cytological material. As smMIP technology allows easy adaptation of panels, this approach can comply with the rapidly expanding molecular markers

    A Population Pharmacokinetic Model Does Not Predict the Optimal Starting Dose of Tacrolimus in Pediatric Renal Transplant Recipients in a Prospective Study: Lessons Learned and Model Improvement

    Get PDF
    Background and Objective: Bodyweight-based dosing of tacrolimus is considered standard care. Currently, at first steady state, a third of pediatric kidney transplant recipients has a tacrolimus pre-dose concentration within the target range. We investigated whether adaptation of the starting dose according to a validated dosing algorithm could increase this proportion. Methods: This was a multi-center, single-arm, prospective trial with a planned interim analysis after 16 patients, in which the tacrolimus starting dose was based on bodyweight, cytochrome P450 3A5 genotype, and donor status (living vs. deceased donor). Results: At the interim analysis, 31% of children had a tacrolimus pre-dose concentration within the target range. As the original dosing algorithm was poorly predictive of tacrolimus exposure, the clinical trial was terminated prematurely. Next, the original model was improved by including the data of the children included in this trial, thereby doubling the number of children in the model building cohort. Data were best described with a two-compartment model with inter-individual variability, allometric scaling, and inter-occasion variability on clearance. Cytochrome P450 3A5 genotype, hematocrit, and creatinine influenced the tacrolimus clearance. A new starting dose model was developed in which the cytochrome P450 3A5 genotype was incorporated. Both models were successfully internally and externally validated. Conclusions: The weight-normalized starting dose of tacrolimus should be higher in patients with a lower bodyweight and in those who are cytochrome P450 3A5 expressers

    Improve in-depth immunological risk assessment to optimize genetic-compatibility and clinical outcomes in child and adolescent recipients of parental donor kidney transplants: protocol for the INCEPTION study.

    Get PDF
    BACKGROUND: Parental donor kidney transplantation is the most common treatment option for children and adolescents with kidney failure. Emerging data from observational studies have reported improved short- and medium-term allograft outcomes in recipients of paternal compared to maternal donors. The INCEPTION study aims to identify potential differences in immunological compatibility between maternal and paternal donor kidneys and ascertain how this affects kidney allograft outcomes in children and adolescents with kidney failure. METHODS: This longitudinal observational study will recruit kidney transplant recipients aged ≤18 years who have received a parental donor kidney transplant across 4 countries (Australia, New Zealand, United Kingdom and the Netherlands) between 1990 and 2020. High resolution human leukocyte antigen (HLA) typing of both recipients and corresponding parental donors will be undertaken, to provide an in-depth assessment of immunological compatibility. The primary outcome is a composite of de novo donor-specific anti-HLA antibody (DSA), biopsy-proven acute rejection or allograft loss up to 60-months post-transplantation. Secondary outcomes are de novo DSA, biopsy-proven acute rejection, acute or chronic antibody mediated rejection or Chronic Allograft Damage Index (CADI) score of > 1 on allograft biopsy post-transplant, allograft function, proteinuria and allograft loss. Using principal component analysis and Cox proportional hazards regression modelling, we will determine the associations between defined sets of immunological and clinical parameters that may identify risk stratification for the primary and secondary outcome measures among young people accepting a parental donor kidney for transplantation. This study design will allow us to specifically investigate the relative importance of accepting a maternal compared to paternal donor, for families deciding on the best option for donation. DISCUSSION: The INCEPTION study findings will explore potentially differential immunological risks of maternal and paternal donor kidneys for transplantation among children and adolescents. Our study will provide the evidence base underpinning the selection of parental donor in order to achieve the best projected long-term kidney transplant and overall health outcomes for children and adolescents, a recognized vulnerable population. TRIAL REGISTRATION: The INCEPTION study has been registered with the Australian New Zealand Clinical Trials Registry, with the trial registration number of ACTRN12620000911998 (14th September 2020)
    • …
    corecore