379 research outputs found

    Terrestrial Planet Formation Surrounding Close Binary Stars

    Get PDF
    Disk material has been observed around both components of some young close binary star systems. It has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around 'close' binary star systems with stellar separations between 0.05 AU and 0.4 AU and binary eccentricities up to 0.8. In each simulation, the sum of the masses of the two stars is 1 solar mass, and giant planets are included. Our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances less than ~ 0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.Comment: 60 pages, 4 tables, and 11 low resolution eps figures. Article with high resolution figures is available at http://www-personal.umich.edu/~equintan/publications.html . Accepted for publication in Icaru

    A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS)

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) has a goal of detecting small planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. Here we present estimates of how many exoplanets the TESS mission will detect, physical properties of the detected planets, and the properties of the stars that those planets orbit. This work uses stars drawn from the TESS Input Catalog Candidate Target List and revises yields from prior studies that were based on Galactic models. We modeled the TESS observing strategy to select approximately 200,000 stars at 2-minute cadence, while the remaining stars are observed at 30-min cadence in full-frame image data. We placed zero or more planets in orbit around each star, with physical properties following measured exoplanet occurrence rates, and used the TESS noise model to predict the derived properties of the detected exoplanets. In the TESS 2-minute cadence mode we estimate that TESS will find 1250+/-70 exoplanets (90% confidence), including 250 smaller than 2 Earth-radii. Furthermore, we predict an additional 3100 planets will be found in full-frame image data orbiting bright dwarf stars and more than 10,000 around fainter stars. We predict that TESS will find 500 planets orbiting M-dwarfs, but the majority of planets will orbit stars larger than the Sun. Our simulated sample of planets contains hundreds of small planets amenable to radial velocity follow-up, potentially more than tripling the number of planets smaller than 4 Earth-radii with mass measurements. This sample of simulated planets is available for use in planning follow-up observations and analyses.Comment: Accepted for publication in ApJS. Table 2 is available in machine-readable format from https://doi.org/10.6084/m9.figshare.613767

    Climate Modeling of a Potential ExoVenus

    Get PDF
    The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere may be a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exoVenus. Here we discuss the planetary parameters of Kepler-1649b with relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions towards a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope (JWST) Near-Infrared Spectrograph (NIRSpec) capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs.Comment: 11 pages, 4 figures, 1 table, accepted for publication in the Astrophysical Journal. The data from this paper are open source and are available from the following data portals: https://portal.nccs.nasa.gov/GISS_modelE/ROCKE-3D/Climate_Modeling_of_a_Potential_ExoVenus https://archive.org/details/Climate_Modeling_of_a_Potential_ExoVenu

    Climate Modeling of a Potential Exovenus

    Get PDF
    The planetary mass and radius sensitivity of exoplanet discovery capabilities has reached into the terrestrial regime. The focus of such investigations is to search within the Habitable Zone where a modern Earth-like atmosphere may be a viable comparison. However, the detection bias of the transit and radial velocity methods lies close to the host star where the received flux at the planet may push the atmosphere into a runaway greenhouse state. One such exoplanet discovery, Kepler-1649b, receives a similar flux from its star as modern Venus does from the Sun, and so was categorized as a possible exoVenus. Here we discuss the planetary parameters of Kepler-1649b in relation to Venus to establish its potential as a Venus analog. We utilize the general circulation model ROCKE-3D to simulate the evolution of the surface temperature of Kepler-1649b under various assumptions, including relative atmospheric abundances. We show that in all our simulations the atmospheric model rapidly diverges from temperate surface conditions toward a runaway greenhouse with rapidly escalating surface temperatures. We calculate transmission spectra for the evolved atmosphere and discuss these spectra within the context of the James Webb Space Telescope Near-Infrared Spectrograph capabilities. We thus demonstrate the detectability of the key atmospheric signatures of possible runaway greenhouse transition states and outline the future prospects of characterizing potential Venus analogs
    • …
    corecore