56 research outputs found

    New synthetic red- and orange-emitting luciferases to upgrade in vitro and 3D cell biosensing

    Get PDF
    Bioluminescence (BL), i.e., the emission of light in living organisms, has become an indispensable tool for a plethora of applications including bioassays, biosensors, and in vivo imaging. Current efforts are focused on the obtainment of new luciferases having optimized properties, such as improved thermostability at 37 degrees C, pH-insensitive emission, high quantum yield, extended kinetics and red-shifted emission. To address these issues we have obtained two new synthetic luciferases, an orange and a red-emitting luciferase, which were designed to achieve high sensitivity (BoLuc) and multiplexing capability (BrLuc) for in vitro and in vivo biosensing using as a starting template a recently developed thermostable synthetic luciferase (BgLuc). Both luciferases were characterized in terms of emission behaviour and thermal and pH stability showing promising features as reporter proteins and BL probes. As proof-of-principle application, an inflammation assay based on Human Embryonic Kidney (HEK293T) 3D cell cultures was developed using either the orange or the red-emitting mutant. The assay provided good analytical performance, with limits of detection for Tumor Necrosis Factor (TNF alpha) of 0.06 and 0.12 ng mL-1 for BoLuc and BrLuc, respectively. Moreover, since these luciferases require the same substrate, d-luciferin, they can be easily implemented in dual-color assays with a significant reduction of total cost per assay

    Bioluminescence Sensing in 3D Spherical Microtissues for Multiple Bioactivity Analysis of Environmental Samples

    Get PDF
    The development of predictive in vitro sensing tools able to provide rapid information on the different bioactivities of a sample is of pivotal importance, not only to monitor environmental toxicants, but also to understand their mechanisms of action on diverse molecular pathways. This mechanistic understanding is highly important for the characterization of toxicological hazards, and for the risk assessment of chemicals and environmental samples such as surface waters and effluents. Prompted by this need, we developed and optimized a straightforward bioluminescent multiplexed assay which enables the measurement of four bioactivities, selected for their relevance from a toxicological perspective, in bioluminescent microtissues. The assay was developed to monitor inflammatory, antioxidant, and toxic activity, and the presence of heavy metals, and was successfully applied to the analysis of river water samples, showing potential applicability for environmental analyses. The assay, which does not require advanced equipment, can be easily implemented in general laboratories equipped with basic cell culture facilities and a luminometer

    Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors

    Get PDF
    This paper describes the generation of genetically engineered bioluminescent magnetotactic bacteria (BL-MTB) and their integration into a microfluidic analytical device to create a portable toxicity detection system. Magnetospirillum gryphiswaldense strain MSR-1 was bioengineered to constitutively express a red-emitting click beetle luciferase whose bioluminescent signal is directly proportional to bacterial viability. The magnetic properties of these bacteria have been exploited as "natural actuators" to transfer the cells in the chip from the reaction to the detection area, optimizing the chip's analytical performance. A robust and cost-effective biosensor for the evaluation of sample toxicity, named MAGNETOX, based on lens-free contact imaging detection, has been developed. A microfluidic chip has been fabricated using multilayered black and transparent polydimethyl siloxane (PDMS) in which BL-MTB are incubated for 30 min with the sample, then moved by microfluidics, trapped, and concentrated in detection chambers by an array of neodymium-iron-boron magnets. The chip is placed in contact with a cooled CCD via a fiber optic taper to perform quantitative bioluminescence imaging after addition of luciferin substrate. A model toxic compound (dimethyl sulfoxide, DMSO) and a bile acid (taurochenodeoxycholic acid, TCDCA) were used to investigate the analytical performance of the MAGNETOX. Incubation with DMSO and TCDCA drastically reduces the bioluminescent signal in a dose-related manner. The generation of bacteria that are both magnetic and bioluminescent combines the advantages of easy 2D cell handling with ultra sensitive detection, offering undoubted potential to develop cell-based biosensors integrated into microfluidic chips

    A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals

    Get PDF
    The presence of chemicals with estrogenic activity in surface, groundwater, and drinking water poses serious concerns for potential threats to human health and aquatic life. At present, no sensitive portable devices are available for the rapid monitoring of such contamination. Here, we propose a cell-based mobile platform that exploits a newly developed bioluminescent yeast-estrogen screen (nanoYES) and a low-cost compact camera as light detector. Saccharomyces cerevisiae cells were genetically engineered with a yeast codon-optimized variant of NanoLuc luciferase (yNLucP) under the regulation of human estrogen receptor α activation. Ready-to-use 3D-printed cartridges with immobilized cells were prepared by optimizing a new procedure that enables to produce alginate slices with good reproducibility. A portable device was obtained exploiting a compact camera and wireless connectivity enabling a rapid and quantitative evaluation (1-h incubation at room temperature) of total estrogenic activity in small sample volumes (50 μL) with a LOD of 0.08 nM for 17β-estradiol. The developed portable analytical platform was applied for the evaluation of water samples spiked with different chemicals known to have estrogen-like activity. Thanks to the high sensitivity of the newly developed yeast biosensor and the possibility to wireless connect the camera with any smartphone model, the developed configuration is more versatile than previously reported smartphone-based devices, and could find application for on-site analysis of endocrine disruptors. [Figure not available: see fulltext.]

    Portable light detectors for bioluminescence biosensing applications: A comprehensive review from the analytical chemist's perspective

    Get PDF
    Bioluminescence, that is the emission of light in living organisms, has been extensively explored and applied for diverse bioanalytical applications, spanning from molecular imaging to biosensing. The unprecedented technological evolution of portable light detectors opened new possibilities to implement bioluminescence detection into miniaturized devices. We are witnessing a number of applications, including DNA sequencing, reporter gene assays, DNA amplification for point-of care and point-of need analyses relying on BL. Several photon detectors are currently available for measuring low light emission, such as photomultiplier tubes (PMT), charge-coupled devices (CCD), complementary metal oxide semiconductors (CMOS), single photon avalanche diodes (SPADs), silicon photomultipliers (SiPMs) and smartphone-integrated CMOS. Each technology has pros and cons and several issues, such as temperature dependence of the instrumental specific noise, the power supply, imaging capability and ease of integration, should be considered in the selection of the most appropriate detector for the selected BL application

    Smartphone-based multicolor bioluminescent 3D spheroid biosensors for monitoring inflammatory activity

    Get PDF
    Whole-cell biosensors present many advantages, including being able to monitor the toxicity and bioavailability of chemicals; cells grown in traditional 2D cultures, however, do not reproduce the complexity of in vivo physiology. In the last years, 3D cell-culture models have garnered great attention due to their capability to better mimic in vivo cellular responses to external stimuli, providing excellent model living organisms. In order to obtain a predictive, sensitive, and robust yet low-cost 3D cell biosensor, we developed a smartphone-based bioluminescent 3D cell biosensor platform for effect-based analysis. We exploited the Nuclear Factor-kappa B (NF-kB) signal transduction pathway, which is induced by several types of stressors and is involved in the regulation of cell-cycle/growth, inflammation, apoptosis, and immunity. The smartphone-based biosensor relies on immobilized HEK293 spheroids genetically engineered with powerful red- and green-emitting luciferases utilized as inflammation and viability reporters. It provides a limit of detection for Tumor Necrosis Factor (TNF\u3b1) of 0.15\u202f\ub1\u202f0.05\u202fng/mL and could be a useful tool to initially screen environmental samples or other compounds on-site, especially for additional more accurate chemical analyses

    Peptide Fractions Obtained from Rice By- Products by Means of an Environment- Friendly Process Show In Vitro Health-Related Bioactivities

    Get PDF
    Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen

    Current advances in the use of bioluminescence assays for drug discovery: an update of the last ten years

    No full text
    IntroductionBioluminescence is a well-established optical detection technique widely used in several bioanalytical applications, including high-throughput and high-content screenings. Thanks to advances in synthetic biology techniques and deep learning, a wide portfolio of luciferases is now available with tuned emission wavelengths, kinetics, and high stability. These luciferases can be implemented in the drug discovery and development pipeline, allowing high sensitivity and multiplexing capability.Areas coveredThis review summarizes the latest advancements of bioluminescent systems as toolsets in drug discovery programs for in vitro applications. Particular attention is paid to the most advanced bioluminescence-based technologies for drug screening over the past 10 years (from 2013 to 2023) such as cell-free assays, cell-based assays based on genetically modified cells, bioluminescence resonance energy transfer, and protein complementation assays in 2D and 3D cell models.Expert opinionThe availability of tuned bioluminescent proteins with improved emission and stability properties is vital for the development of bioluminescence assays for drug discovery, spanning from reporter gene technology to protein-protein techniques. Further studies, combining machine learning with synthetic biology, will be necessary to obtain new tools for sustainable and highly predictive bioluminescent drug discovery platforms

    Colorimetric Paper Sensor for Food Spoilage Based on Biogenic Amine Monitoring

    Get PDF
    Biogenic amines (BAs), nitrogenous molecules usually present in different foods, can be considered an indicator of freshness and food quality since their amount increases during food spoilage. Their detection, possibly in real time via the use of smart packaging, is therefore of crucial importance to ensure food safety and to fulfill consumers’ demand. To this end, colorimetric sensors are considered one of the most feasible solutions. Here, we report a user-friendly colorimetric sensing paper able to detect BAs via the naked eye. The sensing molecule is the aglycone genipin, a natural cross-linking agent extracted from gardenia fruit, able to bind BAs producing water-soluble blue pigments. The paper sensor was applied to chicken meat quality monitoring and a quantitative analysis was performed with image acquisition via a smartphone camera, achieving a limit of detection equivalent to 0.1 mM of putrescine. The suitability of the BA sensing paper was assessed by integrating the sensor into smart packaging and analyzing commercial chicken meat samples stored at different temperatures; the results of the sensor paralleled the “best before date” indicated on the label, confirming the potential applicability of the sensor as a smart label
    corecore