56 research outputs found

    Quasi-analytical homogenization approach for the non-linear analysis of in-plane loaded masonry panels

    Full text link
    [EN] A simple holonomic compatible homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar joints. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how the homogenized stress-strain behaviour can be evaluated semi-analytically. At a structural level, it is therefore not necessary to solve a FE homogenization problem at each load step in each Gauss point. Non-linear structural analyses are carried out on a windowed shear wall, for which experimental and numerical data are available in the literature, with the aim of showing how quite reliable results may be obtained with a limited computational effort.Milani, G.; Bertolesi, E. (2017). Quasi-analytical homogenization approach for the non-linear analysis of in-plane loaded masonry panels. Construction and Building Materials. 146:723-743. doi:10.1016/j.conbuildmat.2017.04.008S72374314

    Augustus Bridge in Narni (Italy): Seismic Vulnerability Assessment of the Still Standing Part, Possible Causes of Collapse, and Importance of the Roman Concrete Infill in the Seismic-Resistant Behavior

    Full text link
    [EN] The final results of advanced FE analyses performed on a Roman arch bridge, namely the Augustus Bridge (Ponte di Augusto) in Narni, center Italy are presented. The bridge, one of the most impressive Roman artworks, has been injured by several traumatic events during the millennia, the result of which is its present ruined condition. The aims are manifold, starting from a better understanding of the causes at the base of the partial collapse occurred on the central pier, passing through a seismic assessment of the ruined still standing part and ending with a discussion on the role played by Roman concrete on the stability against horizontal actions. An advanced material model exhibiting damage, plastic deformation, and softening in both tension and compression is adopted for Roman concrete. Both the case of a foundation settlement of the central pier and the application of a seismic excitation are investigated, by means of nonlinear static and nonlinear dynamic analyses. Numerical simulations are carried out within the FE code ABAQUS by means of detailed 3D models, using historical documentation and previous results of the latest research carried out on materials, assuming realistic models on both the uniaxial stress-strain relationships under nonlinear load-unload conditions by using independent damage parameters in tension and compression, and the multiaxial behavior ruled by a regularized Drucker-Prager strength criterion. The methodological approach turns out to be potentially valid for all existing Roman bridges. Results highlight the vulnerability of the ruins, that the collapse of the central part was probably due to settlement of the central pier and that Roman concrete plays a crucial role in increasing the stability against earthquake actions.Bertolesi, E.; Milani, G.; Lopane, FD.; Acito, M. (2017). Augustus Bridge in Narni (Italy): Seismic Vulnerability Assessment of the Still Standing Part, Possible Causes of Collapse, and Importance of the Roman Concrete Infill in the Seismic-Resistant Behavior. International Journal of Architectural Heritage. 11(5):717-746. doi:10.1080/15583058.2017.1300712S71774611

    Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Numerical analyses

    Full text link
    [EN] The two arches and the three vaults experimentally described in Carozzi et al. (2017) are here analyzed with a novel robust FE lower bound limit analysis code, suitable to predict active failure mechanisms, lines of thrust and collapse loads in absence and presence of TRM, SRG and FRP reinforcement. The approach relies into a discretization into rigid-infinitely resistant quadrilateral elements for masonry, interfaces between contiguous elements exhibiting limited strength and perfectly bonded rigid-plastic trusses representing the reinforcement. For masonry, a No Tension Material NTM model can be adopted to compare with classic Heyman¿s results, but also a limited compressive and tensile strength with a cohesive frictional behavior in shear may be accounted for in a relatively simple fashion, i.e. in principle with the possibility to model shear sliding and compression crushing. Debonding and delamination of the reinforcement are considered in a conventional way, assuming trusses with a limited tensile strength derived from either experimental data available or consolidated formulas from the literature. With the knowledge of the exact position of the hinges provided by limit analysis, 2D FE static analyses with non-linearity and softening concentrated exclusively on hinges are carried out, to simply extend the knowledge beyond collapse loads estimation towards a prediction of initial stiffness and ultimate displacements. In all cases, promising agreement with experiments is observed.Part of the analyses were developed within the activities of Rete dei Laboratori Universitari di Ingegneria Sismica - ReLUIS for the research program funded by the Dipartimento di Protezione Civile.Bertolesi, E.; Milani, G.; Carozzi, FG.; Poggi, C. (2018). Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Numerical analyses. Composite Structures. 187:385-402. https://doi.org/10.1016/j.compstruct.2017.12.021S38540218

    Micro-mechanical FE numerical model for masonry curved pillars reinforced with FRP strips subjected to single lap shear tests

    Get PDF
    [EN] The present paper discusses the results obtained by using a micro-mechanical FE numerical model for the study the bond behavior of some curved specimens strengthened by Fiber Reinforced Polymer (FRP) composite materials. The numerical model, implemented into the FE code Abaqus, is a sophisticated micro-modelling (heterogeneous) approach, where bricks and mortar are meshed separately by means of 4-noded plane strain elements exhibiting distinct damage in tension and compression, FRP is assumed elastic and an elastic uncoupled cohesive layer is interposed between FRP reinforcement and masonry pillar. The experimental investigation considered to benchmark the numerical approach is aimed at characterizing the influence of normal stresses induced by curved supports on the stress-transfer mechanism of FRP materials. To this scope some single lap shear tests performed at the University of Florence on FRP reinforced curved pillars with two different curvature radii (1500 and 3000 mm) are here considered. The obtained numerical results show a promising match with experimental evidences, in terms of elastic stiffness, peak loads and post-peak behavior. Indeed, the proposed approach allows to correctly account for important local effects, such as the effect of FRP-masonry interfacial normal stresses on the global delamination strength and the distribution of damage in the pillar volume. By using the proposed modelling approach, comprehensive numerical sensitivity analyses to investigate the role played by the curvature on the ultimate delamination strength, are also presented in the paper.Bertolesi, E.; Milani, G.; Fagone, M.; Rotunno, T.; Grande, E. (2018). Micro-mechanical FE numerical model for masonry curved pillars reinforced with FRP strips subjected to single lap shear tests. Composite Structures. 201:916-931. https://doi.org/10.1016/j.compstruct.2018.06.111S91693120

    Coupled interface-based modelling approach for the numerical analysis of curved masonry specimens strengthened by CFRP

    Full text link
    [EN] Aim of the present paper is to numerically study the bond behavior of curved masonry specimens externally strengthened by Carbon Fiber Reinforced Polymer systems (CFRP). A simple 1D-modeling approach is presented to this aim, where the coupled behavior between shear and normal stresses developing at the reinforcement/masonry interface level is specifically introduced to properly account for the role played by the curvature radius. The model is indeed enriched by the introduction of shear stress-slip laws able to account for the beneficial friction effect, when compression normal stresses develop at the interface level and the reduction of the slip strength corresponding to the de-cohesion in presence of normal stresses in tension. Considering some case studies derived from the current literature, consisting of shear-lap bond tests of curved masonry specimens characterized by different curvatures of the bonded surface and different strengthening configurations, the validation of the proposed approach is carried out. In particular, two modeling strategies are considered and critically compared: the first one, denoted as approach (A), where the presence of the mortar joints is neglected, and the second one, denoted as approach (B), where mortar joints are specifically introduced in the model. Finally, the results obtained by using the proposed simple approach are compared with those obtained from both sophisticated FE numerical models and theoretical formulas deduced from the current literature.Grande, E.; Fagone, M.; Rotunno, T.; Bertolesi, E.; Milani, G. (2018). Coupled interface-based modelling approach for the numerical analysis of curved masonry specimens strengthened by CFRP. Composite Structures. 200:498-506. https://doi.org/10.1016/j.compstruct.2018.05.118S49850620

    Single lap shear tests of masonry curved pillars externally strengthened by CFRP strips

    Get PDF
    [EN] The paper presents an experimental study concerning the bond behaviour of Carbon Fiber Reinforced Polymers (CFRP) sheet reinforcements applied to curved masonry surfaces. Such strengthening technique is more and more used in structural rehabilitation and retrofitting of existing buildings. Its effectiveness has been demonstrated by several studies published in the literature, mostly devoted to flat bonded surfaces. Observing that CFRPs are extensively applied on arches and vaults but only few research activities concern curved bonded surfaces, the experimental study described in this paper is aimed to contribute to fill this gap. The experimental program was carried out on portions of masonry arches, reinforced by CFRP sheets bonded at extrados or intrados, tested by a single lap shear test. The experimental results allowed to analyse the effectiveness of such reinforcements, loaded by actions tangent to an end of the reinforcement itself, with respect to its position (intrados or extrados) and to the curvature of the bonding surface. As expected, the results highlight that the bond behaviour strongly depend on the position of the reinforcement. In particular, the capacity of reinforcements bonded at the extrados increases with the curvature, while decreases with the curvature for those bonded at intrados.The Authors gratefully acknowledge the financial support provided by the Italian Department of Civil Protection and ReLUIS (Rete dei Laboratori Universitari di Ingegneria Sismica), 2014-2016 Grant - Innovative Materials.Rotunno, T.; Fagone, M.; Bertolesi, E.; Grande, E.; Milani, G. (2018). Single lap shear tests of masonry curved pillars externally strengthened by CFRP strips. Composite Structures. 200:434-448. https://doi.org/10.1016/j.compstruct.2018.05.097S43444820

    The influence of the joint thickness on the adhesion between CFRP reinforcements and masonry arches

    Get PDF
    Abstract The effectiveness of Carbon Fiber Reinforced Polymers (CFRP) reinforcements bonded to masonry structures is demonstrated by the several interventions made on existing buildings as well as by the numerous studies presented in the scientific literature. In practical strengthening interventions, CFRP sheets are being used to reinforce both plane and curved structural elements. Contrariwise, research in the scientific literature are mainly devoted to the analysis of the effectiveness of such reinforcements bonded on plane surfaces. For this reason, the experimental program described in this paper concerns the analysis of the mechanical behavior of portion of masonry arches reinforced by CFRP sheets. The experimental results allowed to analyze the effectiveness of such reinforcements applied at intrados or extrados, loaded by actions tangent to an end of the reinforcement itself. The influence of the mortar joints thickness on the performance of such reinforcements has been also analyzed in the experimental program

    A Parametric Computational Study of RC Building Structures under Corner-Column Removal Situations

    Get PDF
    [EN] Building progressive collapse is currently one of the hottest topics in the structural engineering field. Most of the research carried out to date on this topic has been focused on the structural analysis of the failure of one or more columns in a building to determine the Alternative Load Paths (ALPs) the structure can activate. Past research was mainly focused on extreme situations with high loads and large structural deformations and, to a lesser extent, research looked at lower loads used in design accidental situations, which requires a different set of assumptions in the analysis. This paper describes a study aimed at analysing accidental design situations in corner-column removal scenarios in reinforced concrete (RC) building structures and evaluating the available real ALPs in order to establish practical recommendations for design situations that could be taken into account in future design codes. A wide parametric computational analysis was carried out with advanced Finite Element (FE) models which the authors validated by full¿scale tests on a purpose¿built building structure. The findings allowed us to: (i) establish design recommendations, (ii) demonstrate the importance of Vierendeel action and (iii) recommend Dynamic Amplification Factors (DAFs) for design situations.This research was funded by Fundacion BBVA-Becas Leonardo a Investigadores y Creadores Culturales 2017; the Spanish Ministry of Economy, Industry and Competitiveness, grant number BIA2017-88322-R-AR; Generalitat Valenciana/Fons Social Europeu, grant number APOSTD/2019/101 and Universitat Politecnica de Valencia, grant number PAID-10-17. This work is also part of the project "Extension of theoretical models against progressive collapse for tall and supertall concrete buildings", funded by the Engineering Physical Science Research Council (EPSRC) of the UK as part of an Impact Acceleration Account (IAA) held at the University of Surrey (grant number EP/K008153/1), and a continuation of two research projects also funded by EPSRC of the UK (grant ref: EP/K503939 and grant ref: EP/K008153/1).Buitrago, M.; Bertolesi, E.; Garzón-Roca, J.; Sagaseta, J.; Adam, JM. (2020). A Parametric Computational Study of RC Building Structures under Corner-Column Removal Situations. Applied Sciences. 10(24):1-27. https://doi.org/10.3390/app10248911S1271024Adam, J. M., Parisi, F., Sagaseta, J., & Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. doi:10.1016/j.engstruct.2018.06.082Kiakojouri, F., De Biagi, V., Chiaia, B., & Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061. doi:10.1016/j.engstruct.2019.110061Stephen, D., Lam, D., Forth, J., Ye, J., & Tsavdaridis, K. D. (2019). An evaluation of modelling approaches and column removal time on progressive collapse of building. Journal of Constructional Steel Research, 153, 243-253. doi:10.1016/j.jcsr.2018.07.019Eren, N., Brunesi, E., & Nascimbene, R. (2019). Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings. Engineering Structures, 178, 375-394. doi:10.1016/j.engstruct.2018.10.056Zhang, L., Li, H., & Wang, W. (2020). Retrofit Strategies against Progressive Collapse of Steel Gravity Frames. Applied Sciences, 10(13), 4600. doi:10.3390/app10134600Biagi, V. D., Kiakojouri, F., Chiaia, B., & Sheidaii, M. R. (2020). A Simplified Method for Assessing the Response of RC Frame Structures to Sudden Column Removal. Applied Sciences, 10(9), 3081. doi:10.3390/app10093081Yu, J., Luo, L., & Li, Y. (2018). Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios. Engineering Structures, 159, 14-27. doi:10.1016/j.engstruct.2017.12.038Bermejo, M., Santos, A. P., & Goicolea, J. M. (2017). Development of Practical Finite Element Models for Collapse of Reinforced Concrete Structures and Experimental Validation. Shock and Vibration, 2017, 1-9. doi:10.1155/2017/4636381Fu, Q., & Tan, K.-H. (2019). Numerical study on steel-concrete composite floor systems under corner column removal scenario. Structures, 21, 33-44. doi:10.1016/j.istruc.2019.06.003Mucedero, G., Perrone, D., Brunesi, E., & Monteiro, R. (2020). Numerical Modelling and Validation of the Response of Masonry Infilled RC Frames Using Experimental Testing Results. Buildings, 10(10), 182. doi:10.3390/buildings10100182Tohidi, M., & Janby, A. (2020). Finite-Element Modeling of Progressive Failure for Floor-to-Floor Assembly in the Precast Cross-Wall Structures. Journal of Structural Engineering, 146(6), 04020087. doi:10.1061/(asce)st.1943-541x.0002588Olmati, P., Sagaseta, J., Cormie, D., & Jones, A. E. K. (2017). Simplified reliability analysis of punching in reinforced concrete flat slab buildings under accidental actions. Engineering Structures, 130, 83-98. doi:10.1016/j.engstruct.2016.09.061Buitrago, M., Sagaseta, J., & Adam, J. M. (2020). Avoiding failures during building construction using structural fuses as load limiters on temporary shoring structures. Engineering Structures, 204, 109906. doi:10.1016/j.engstruct.2019.109906Buitrago, M., Sagaseta, J., & Adam, J. M. (2018). Effects of sudden failure of shoring elements in concrete building structures under construction. Engineering Structures, 172, 508-522. doi:10.1016/j.engstruct.2018.06.052Joshi, D. D., & Patel, P. V. (2018). Experimental study of precast dry connections constructed away from beam–column junction under progressive collapse scenario. Asian Journal of Civil Engineering, 20(2), 209-222. doi:10.1007/s42107-018-0099-zMa, F., Gilbert, B. P., Guan, H., Xue, H., Lu, X., & Li, Y. (2019). Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 180, 728-741. doi:10.1016/j.engstruct.2018.11.043Yang, T., Han, Z., Deng, N., & Chen, W. (2019). Collapse Responses of Concrete Frames Reinforced with BFRP Bars in Middle Column Removal Scenario. Applied Sciences, 9(20), 4436. doi:10.3390/app9204436Faridmehr, I., & Hajmohammadian Baghban, M. (2020). An Overview of Progressive Collapse Behavior of Steel Beam-to-Column Connections. Applied Sciences, 10(17), 6003. doi:10.3390/app10176003Qian, K., & Li, B. (2019). Strengthening and Retrofitting Precast Concrete Buildings to Mitigate Progressive Collapse Using Externally Bonded GFRP Strips. Journal of Composites for Construction, 23(3), 04019018. doi:10.1061/(asce)cc.1943-5614.0000943Lin, K., Lu, X., Li, Y., & Guan, H. (2019). Experimental study of a novel multi-hazard resistant prefabricated concrete frame structure. Soil Dynamics and Earthquake Engineering, 119, 390-407. doi:10.1016/j.soildyn.2018.04.011Qian, K., Liang, S.-L., Feng, D.-C., Fu, F., & Wu, G. (2020). Experimental and Numerical Investigation on Progressive Collapse Resistance of Post-Tensioned Precast Concrete Beam-Column Subassemblages. Journal of Structural Engineering, 146(9), 04020170. doi:10.1061/(asce)st.1943-541x.0002714Zhou, Y., Hu, X., Pei, Y., Hwang, H.-J., Chen, T., Yi, W., & Deng, L. (2020). Dynamic load test on progressive collapse resistance of fully assembled precast concrete frame structures. Engineering Structures, 214, 110675. doi:10.1016/j.engstruct.2020.110675Alshaikh, I. M. H., Bakar, B. H. A., Alwesabi, E. A. H., & Akil, H. M. (2020). Experimental investigation of the progressive collapse of reinforced concrete structures: An overview. Structures, 25, 881-900. doi:10.1016/j.istruc.2020.03.018Buitrago, M., Bertolesi, E., Calderón, P. A., & Adam, J. M. (2021). Robustness of steel truss bridges: Laboratory testing of a full-scale 21-metre bridge span. Structures, 29, 691-700. doi:10.1016/j.istruc.2020.12.005Buitrago, M., Bertolesi, E., Sagaseta, J., Calderón, P. A., & Adam, J. M. (2021). Robustness of RC building structures with infill masonry walls: Tests on a purpose-built structure. Engineering Structures, 226, 111384. doi:10.1016/j.engstruct.2020.111384Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J., & Moragues, J. J. (2020). Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Engineering Structures, 210, 110414. doi:10.1016/j.engstruct.2020.110414Osteraas, J. D. (2006). Murrah Building Bombing Revisited: A Qualitative Assessment of Blast Damage and Collapse Patterns. Journal of Performance of Constructed Facilities, 20(4), 330-335. doi:10.1061/(asce)0887-3828(2006)20:4(330)Bažant, Z. P., Le, J.-L., Greening, F. R., & Benson, D. B. (2008). What Did and Did Not Cause Collapse of World Trade Center Twin Towers in New York? Journal of Engineering Mechanics, 134(10), 892-906. doi:10.1061/(asce)0733-9399(2008)134:10(892)Sasani, M., Kazemi, A., Sagiroglu, S., & Forest, S. (2011). Progressive Collapse Resistance of an Actual 11-Story Structure Subjected to Severe Initial Damage. Journal of Structural Engineering, 137(9), 893-902. doi:10.1061/(asce)st.1943-541x.0000418Pearson, C., & Delatte, N. (2005). Ronan Point Apartment Tower Collapse and its Effect on Building Codes. Journal of Performance of Constructed Facilities, 19(2), 172-177. doi:10.1061/(asce)0887-3828(2005)19:2(172)Xiao, Y., Kunnath, S., Li, F. W., Zhao, Y. B., Lew, H. S., & Bao, Y. (2015). Collapse Test of Three-Story Half-Scale Reinforced Concrete Frame Building. ACI Structural Journal, 112(4). doi:10.14359/51687746Qian, K., Weng, Y.-H., & Li, B. (2018). Impact of two columns missing on dynamic response of RC flat slab structures. Engineering Structures, 177, 598-615. doi:10.1016/j.engstruct.2018.10.011Feng, P., Qiang, H., Ou, X., Qin, W., & Yang, J. (2019). Progressive Collapse Resistance of GFRP-Strengthened RC Beam–Slab Subassemblages in a Corner Column–Removal Scenario. Journal of Composites for Construction, 23(1), 04018076. doi:10.1061/(asce)cc.1943-5614.0000917Zhou, Y., Chen, T., Pei, Y., Hwang, H.-J., Hu, X., Yi, W., & Deng, L. (2019). Static load test on progressive collapse resistance of fully assembled precast concrete frame structure. Engineering Structures, 200, 109719. doi:10.1016/j.engstruct.2019.109719Gao, S., & Guo, L. (2015). Progressive collapse analysis of 20-storey building considering composite action of floor slab. International Journal of Steel Structures, 15(2), 447-458. doi:10.1007/s13296-015-6014-5Wang, F., Yang, J., & Shah, S. (2020). Effect of Horizontal Restraints on Progressive Collapse Resistance of Precast Concrete Beam-Column Framed Substructures. KSCE Journal of Civil Engineering, 24(3), 879-889. doi:10.1007/s12205-020-1035-9Zhang, H., Shu, G., & Pan, R. (2019). Failure Mechanism of Composite Frames Under the Corner Column-Removal Scenario. Journal of Failure Analysis and Prevention, 19(3), 649-664. doi:10.1007/s11668-019-00644-8Micallef, K., Sagaseta, J., Fernández Ruiz, M., & Muttoni, A. (2014). Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading. International Journal of Impact Engineering, 71, 17-33. doi:10.1016/j.ijimpeng.2014.04.00

    Unreinforced and TRM-reinforced masonry building subjected to pseudo-dynamic excitations: numerical and experimental insights

    Full text link
    [EN] This paper contains a numerical study based on tests carried out at the Universitat Politècnica de València (Spain) on a U-shaped unreinforced and TRM-reinforced masonry building structure subjected to horizontal loads. The masonry was composed of clay bricks with 10 mm thick mortar joints arranged in an English bond manner. The prototype was tested by applying pseudo-dynamic displacement-driven cycles and varying cyclic amplitudes and frequencies in two different stages: (i) on the as-built structure and (ii) after the repair and the application of Textile Reinforced Mortar (TRM) material. A series of non-linear numerical simulations were performed adopting the ABAQUS/Explicit FE software. The FE calibration was carried out using the results obtained during ambient vibration tests. Simulations were then used to evaluate the effectiveness of the proposed TRM technique to increasing the strength of low-rise old masonry building structures.The authors would like to express their gratitude to the Spanish Ministry of Economy, Industry and Competitiveness for the funding provided (BIA 2014-59036-R-AR), and also to the Grupo Mapei and Grupo Puma for their invaluable assistance during the experimental tests.Giordano, E.; Bertolesi, E.; Clementi, F.; Buitrago, M.; Adam, JM.; Ivorra Chorro, S. (2021). Unreinforced and TRM-reinforced masonry building subjected to pseudo-dynamic excitations: numerical and experimental insights. Journal of Engineering Mechanics. 147(12):04021107-1-04021107-15. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002017S04021107-104021107-151471

    A full-scale timbrel cross vault subjected to vertical cyclical displacements in one of its supports

    Full text link
    [EN] Up-and-down cyclical displacement of supports-foundations, due for example to the presence of expansive soils, can affect the integrity of a structure and may even lead to its collapse. A recent study carried out at the ICITECH laboratories of the Universitat Politècnica de València analysed the effects of earth settlements on the behaviour of masonry cross vaults. One of the tests involved the construction and testing of a full-scale timbrel cross vault, one of whose supports was subjected to up-and-down vertical displacement cycles. The 4×4 m2 vault was composed of four 3.6 m diameter arches supporting a masonry web. Vertical displacements were applied to one of the supports by means of two synchronised mechanical jacks. The results of the tests provide valuable information to the scientific community, architects and engineers on the behaviour of timbrel cross vaults when one of their supports is subjected to cyclical movements.The authors wish to express their gratitude to the Spanish Ministry of Economy, Industry and Competitiveness for the funding provided through Project BIA 2014-59036-R, and also to LIC-Levantina Ingenieria y Construction and the Grupo Puma for their invaluable assistance. The second author (Elisa Bertolesi) would like to thank the Universitat Politecnica de Valencia for funding received for her postdoctoral grant (PAID-10-17).Torres Górriz, B.; Bertolesi, E.; Calderón García, PA.; Moragues, JJ.; Adam, JM. (2019). A full-scale timbrel cross vault subjected to vertical cyclical displacements in one of its supports. Engineering Structures. 183:791-804. https://doi.org/10.1016/j.engstruct.2019.01.054S79180418
    corecore