228 research outputs found

    Factors Associated with Work Participation and Work Functioning in Depressed Workers: A Systematic Review

    Get PDF
    Background Depression is associated with negative work outcomes such as reduced work participation (WP) (e.g., sick leave duration, work status) and work functioning (WF) (e.g., loss of productivity, work limitations). For the development of evidence-based interventions to improve these work outcomes, factors predicting WP and WF have to be identified. Methods This paper presents a systematic literature review of studies identifying factors associated with WP and WF of currently depressed workers. Results A total of 30 studies were found that addressed factors associated with WP (N = 19) or WF (N = 11). For both outcomes, studies reported most often on the relationship with disorder-related factors, whereas personal factors and work-related factors were less frequently addressed. For WP, the following relationships were supported: strong evidence was found for the association between a long duration of the depressive episode and work disability. Moderate evidence was found for the associations between more severe types of depressive disorder, presence of co-morbid mental or physical disorders, older age, a history of previous sick leave, and work disability. For WF, severe depressive symptoms were associated with work limitations, and clinical improvement was related to work productivity (moderate evidence). Due to the cross-sectional nature of about half of the studies, only few true prospective associations could be identified. Conclusion Our study identifies gaps in knowledge regarding factors predictive of WP and WF in depressed workers and can be used for the design of future research and evidence-based interventions. We recommend undertaking more longitudinal studies to identify modifiable factors predictive of WP and WF, especially work-related and personal factors

    Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes

    Get PDF
    Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss

    The evolution of a highly variable sex chromosome in Gehyra purpurascens (Gekkonidae)

    Full text link
    A karyotypic survey of the gekkonid lizard Gehyra purpurascens revealed a distinctive sex chromosome system. G-banding showed that the Z Chromosome of males is derived from a tandem fusion of two acrocentric chromosomes of a presumed ancestral Gehyra with 2n=44. Through the application of G-; N- and C-banding, a total of six morphs of the W chromosome were identified. These differ by paracentric and pericentric inversions and, in one case, by a centric shift. The possible reasons for such extensive variation in the W chromosome are considered, and it is suggested that increased mutability of the W chromosome may be a causal factor. In contrast to earlier speculations, this example demonstrates that sex chromosomes can evolve without significant changes in the amount of C-band heterochromatin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47361/1/412_2004_Article_BF00292447.pd

    Ontogeny of central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui

    Full text link
    Embryonic development of the central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui , was determined by using immunocytochemistry. The majority of anuran amphibians (frogs) possess a larval stage (tadpole) that undergoes metamorphosis, a dramatic post-embryonic event, whereby the tadpole transforms into the adult phenotype. Directly developing frogs have evolved a derived life-history mode where the tadpole stage has been deleted and embryos develop directly into the adult bauplan. Embryonic development in E. coqui is classified into 15 stages (TS 1–15; 1 = oviposition / 15 = hatching). Serotonergic immunoreactivity was initially detected at TS 6 in the raphe nuclei in the developing rhombencephalon. At TS 7, immunopositive perikarya were observed in the paraventricular organ in the hypothalamus and reticular nuclei in the hindbrain. Development of the serotonergic system was steady and gradual during mid-embryogenesis. However, starting at TS 13 there was a substantial increase in the number of serotonergic neurons in the paraventricular, raphe, and reticular nuclei, a large increase in the number of varicose fibers, and a differentiation of the reticular nuclei in the hindbrain. Consequentially, E. coqui displayed a well-developed central serotonergic system prior to hatching (TS 15). In comparison, the serotonergic system in metamorphic frogs typically starts to develop earlier but the surge of development that transpires in this system occurs post-embryonically, during metamorphosis, and not in the latter stages of embryogenesis, as it does in E. coqui . Overall, the serotonergic development in E. coqui is similar to the other vertebrates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47526/1/429_2005_Article_22.pd

    What determines cell size?

    Get PDF
    AbstractFirst paragraph (this article has no abstract) For well over 100 years, cell biologists have been wondering what determines the size of cells. In modern times, we know all of the molecules that control the cell cycle and cell division, but we still do not understand how cell size is determined. To check whether modern cell biology has made any inroads on this age-old question, BMC Biology asked several heavyweights in the field to tell us how they think cell size is controlled, drawing on a range of different cell types. The essays in this collection address two related questions - why does cell size matter, and how do cells control it

    Molecular specification of germ layers in vertebrate embryos

    Get PDF
    corecore