7 research outputs found

    NMR spectroscopy and MD simulations of carbohydrates

    No full text
    Knowledge about the structure, conformation and dynamics of carbohydrates is important in our understanding of the way carbohydrates function in biological systems, for example in intermolecular signaling and recognition. This thesis is a summary of five papers studying these properties in carbohydrate-containing molecules with NMR spectroscopy and molecular dynamics simulations. In paper I, the ring-conformations of the six-membered rings of two carbaiduronic analogs were investigated. These carbasugars could potentially be used as hydrolytically stable mimics of iduronic acid in drugs. The study showed that the equilibrium is entirely shifted towards the 4C1 conformation. Paper II is an investigation of the conformational flexibility and dynamics of two (1→6)-linked disaccharides related to an oligosaccharide epitope expressed on malignant tumor cells. In paper III, the conformational space of the glycosidic linkage of an alfa-(1→2) linked mannose disaccharide present in N- and O-linked glycoproteins, was studied. A maximum entropy analysis using different priors as background information was used and four new Karplus equations for 3JC,C and 3JC,H coupling constants, related to the glycosidic linkage, were presented. Paper IV describes a structural elucidation of the exopolysaccharide (EPS) produced by Streptococcus thermophilus ST1, a major dairy starter used in yoghurt and cheese production. The EPS contains a hexasaccharide repeating unit of d-galactose and d-glucose residues, which is a new EPS structure of the S. thermophilus species. In paper V, the dynamics of three generations of glycodendrimers were investigated by NMR diffusion and 13C NMR relaxation studies. Three different correlations times were identified, one global correlation time describing the rotation of the dendrimer as a whole, one local correlation time describing the reorientation of the C-H vectors, and one correlation time describing the pulsation of a dendrimer branch

    Conformation and Dynamics at a Flexible Glycosidic Linkage Revealed by NMR Spectroscopy and Molecular Dynamics Simulations : Analysis of β-ʟ-Fucp-(1→6)-α-ᴅ-Glcp-OMe in Water Solution

    No full text
    The intrinsic flexibility of carbohydrates facilitates different 3D structures in response to altered environments. At glycosidic (1 -&gt; 46)-linkages, three torsion angles are variable, and herein the conformation and dynamics of beta-1.-Fucp-(1 -&gt; 6)-alpha-D-Glcp-OMe are investigated using a combination of NMR spectroscopy and molecular dynamics (MD) simulations. The disaccharide shows evidence of conformational averaging for the psi and co torsion angles, best explained by a four-state conformational distribution. Notably, there is a significant population of conformations having psi = 85 degrees (clinal) in addition to those having psi = 180 degrees (anfiperiplanar). Moderate differences in C-13 R-1 relaxation rates are found to be best explained by axially symmetric tumbling in combination with minor differences in librational motion for the two residues, whereas the isomerization motions are occurring too slowly to significantly to the observed relaxation rates. The MD simulation was found to give a reasonably good agreement with experiment, especially with respect to diffusive properties, among which the rotational anisotropy, D parallel to/D parallel to, is found to be 2.35. The force field employed showed too narrow omega torsion angles in the gauche trans and gauche gauche states as well as overestimating the population of the gauche trans conformer. This information can subsequently be used in directing parameter developments and emphasizes the need for refinement of force fields for (1 -&gt; 6)-linked carbohydrates.AuthorCount:3;</p

    Synthesis of aromatic C-xylosides by position inversion of glucose

    No full text
    Two formally C-xylosylated analogs to 2-naphthyl beta-D-xylopyranoside, which is known to initiate priming of glucosaminoglycan chains, were synthesized by a position inversion of glucose (i.e., position I becomes position 5). The D-C-xyloside showed priming, while the L-C-xyloside did not initiate priming. (c) 2006 Elsevier Ltd. All rights reserved

    Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations

    No full text
    The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence

    Complete H-1 and C-13 NMR chemical shift assignments of mono- to tetrasaccharides as basis for NMR chemical shift predictions of oligosaccharides using the computer program CASPER

    No full text
    H-1 and C-13 NMR chemical shift data are used by the computer program CASPER to predict chemical shifts of oligo- and polysaccharides. Three types of data are used, namely, those from monosaccharides, disaccharides, and trisaccharides. To improve the accuracy of these predictions we have assigned the H-1 and C-13 NMR chemical shifts of eleven monosaccharides, eleven disaccharides, twenty trisaccharides, and one tetrasaccharide; in total 43 compounds. Five of the oligosaccharides gave two distinct sets of NMR resonances due to the alpha- and beta-anomeric forms resulting in 48 H-1 and C-13 NMR chemical shift data sets. In addition, the pyranose ring forms of Neu5Ac were assigned at two temperatures, due to chemical shift displacements as a function of temperature. The H-1 NMR chemical shifts were refined using total line-shape analysis with the PERCH NMR software. H-1 and C-13 NMR chemical shift predictions were subsequently carried out by the CASPER program (http://www.casper.organ.su.se/casper/) for three branched oligosaccharides having different functional groups at their reducing ends, namely, a mannose-containing pentasaccharide, and two fucose-containing heptasaccharides having N-acetyllactosamine residues in the backbone of their structures. Good to excellent agreement was observed between predicted and experimental H-1 and C-13 NMR chemical shifts showing the utility of the method for structural determination or confirmation of synthesized oligosaccharides.AuthorCount:12;</p
    corecore