143 research outputs found
Identification of G-quadruplex DNA/RNA binders: Structure-based virtual screening and biophysical characterization
Background
Recent findings demonstrated that, in mammalian cells, telomere DNA (Tel) is transcribed into telomeric repeat-containing RNA (TERRA), which is involved in fundamental biological processes, thus representing a promising anticancer target. For this reason, the discovery of dual (as well as selective) Tel/TERRA G-quadruplex (G4) binders could represent an innovative strategy to enhance telomerase inhibition.
Methods
Initially, docking simulations of known Tel and TERRA active ligands were performed on the 3D coordinates of bimolecular G4 Tel DNA (Tel2) and TERRA (TERRA2). Structure-based pharmacophore models were generated on the best complexes and employed for the virtual screening of ~ 257,000 natural compounds. The 20 best candidates were submitted to biophysical assays, which included circular dichroism and mass spectrometry at different K+ concentrations.
Results
Three hits were here identified and characterized by biophysical assays. Compound 7 acts as dual Tel2/TERRA2 G4-ligand at physiological KCl concentration, while hits 15 and 17 show preferential thermal stabilization for Tel2 DNA. The different molecular recognition against the two targets was also discussed.
Conclusions
Our successful results pave the way to further lead optimization to achieve both increased selectivity and stabilizing effect against TERRA and Tel DNA G4s.
General significance
The current study combines for the first time molecular modelling and biophysical assays applied to bimolecular DNA and RNA G4s, leading to the identification of innovative ligand chemical scaffolds with a promising anticancer profile. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio
Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors
We analyzed a multi-drug resistant (MR) HIV-1 re-
verse transcriptase (RT), subcloned from a patient-
derived subtype CRF02
AG, harboring 45 amino acid
exchanges, amongst them four thymidine analog
mutations (TAMs) relevant for high-level AZT (azi-
dothymidine) resistance by AZTMP excision (M41L,
D67N, T215Y, K219E) as well as four substitutions
of the AZTTP discrimination pathway (A62V, V75I,
F116Y and Q151M). In addition, K65R, known to an-
tagonize AZTMP excision in HIV-1 subtype B was
present. Although MR-RT harbored the most signif-
icant amino acid exchanges T215Y and Q151M of
each pathway, it exclusively used AZTTP discrimi-
nation, indicating that the two mechanisms are mu-
tually exclusive and that the Q151M pathway is ob-
viously preferred since it confers resistance to most
nucleoside inhibitors. A derivative was created, ad-
ditionally harboring the TAM K70R and the rever-
sions M151Q as well as R65K since K65R antago-
nizes excision. MR-R65K-K70R-M151Q was compe-
tent of AZTMP excision, whereas other combinations
thereof with only one or two exchanges still pro-
moted discrimination. To tackle the multi-drug resis-
tance problem, we tested if the MR-RTs could still be
inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors be-
longing to different inhibitor classes, indicating the
importance of developing RNase H inhibitors further
as anti-HIV drugs
Suppression of lipopolysaccharide-induced COX-2 expression via p38MAPK, JNK, and C/EBPβ phosphorylation inhibition by furomagydarin A, a benzofuran glycoside from Magydaris pastinacea
The phytochemical investigation of the methanol extract of the seeds of Magydaris pastinacea afforded two undescribed benzofuran glycosides, furomagydarins A-B (1, 2), together with three known coumarins. The structures of the new isolates were elucidated after extensive 1D and 2D NMR experiments as well as HR MS. Compound 1 was able to inhibit the COX-2 expression in RAW264.7 macrophages exposed to lipopolysaccharide, a pro-inflammatory stimulus. RT-qPCR and luciferase reporter assays suggested that compound 1 reduces COX-2 expression at the transcriptional level. Further studies highlighted the capability of compound 1 to suppress the LPS-induced p38MAPK, JNK, and C/EBP beta phosphorylation, leading to COX-2 down-regulation in RAW264.7 macrophages
Flavonoids and Acid-Hydrolysis derivatives of Neo-Clerodane diterpenes from Teucrium flavum subsp. glaucum as inhibitors of the HIV-1 reverse transcriptase–associated RNase H function
Bioassay-guided fractionation of the ethyl acetate extract from Teucrium flavum subsp. glaucum, endowed with inhibitory activity towards the HIV-1 reverse transcriptase–associated RNase H function, led to the isolation of salvigenin (1), cirsimaritin (2) and cirsiliol (3) along with the neo-clerodanes teuflavin (4) and teuflavoside (5). Acid hydrolysis of the inactive teuflavoside provided three undescribed neo-clerodanes, flavuglaucins A-C (7-9) and one known neo-clerodane (10). Among all neo-clerodanes, flavuglaucin B showed the highest inhibitory activity towards RNase H function with a IC50 value of 9.1 μM. Molecular modelling and site-directed mutagenesis analysis suggested that flavuglaucin B binds into an allosteric pocket close to RNase H catalytic site. This is the first report of clerodane diterpenoids endowed with anti-reverse transcriptase activity. Neo-clerodanes represent a valid scaffold for the development of a new class of HIV-1 RNase H inhibitors
Structure-based virtual screening of novel natural alkaloid derivatives as potential binders of h-telo and c-myc DNA G-quadruplex conformations
Several ligands can bind to the non-canonical G-quadruplex DNA structures thereby stabilizing them. These molecules can act as effective anticancer agents by stabilizing the telomeric regions of DNA or by regulating oncogene expression. In order to better interact with the quartets of G-quadruplex structures, G-binders are generally characterized by a large aromatic core involved in pi-pi stacking. Some natural flexible cyclic molecules from Traditional Chinese Medicine have shown high binding affinity with G-quadruplex, such as berbamine and many other alkaloids. Using the structural information available on G-quadruplex structures, we performed a high throughput in silico screening of commercially available alkaloid derivative databases by means of a structure-based approach based on docking and molecular dynamics simulations against the human telomeric sequence d[AG(3)(T(2)AG(3))(3)] and the c-myc promoter structure. We identified 69 best hits reporting an improved theoretical binding affinity with respect to the active set. Among them, a berberine derivative, already known to remarkably inhibit telomerase activity, was related to a better theoretical affinity versus c-myc
Privileged Scaffold Hybridization in the Design of Carbonic Anhydrase Inhibitors
Human Carbonic Anhydrases (hCA) are enzymes that contribute to cancer's development and progression. Isoforms IX and XII have been identified as potential anticancer targets, and, more specifically, hCA IX is overexpressed in hypoxic tumor cells, where it plays an important role in reprogramming the metabolism. With the aim to find new inhibitors towards IX and XII isoforms, the hybridization of the privileged scaffolds isatin, dihydrothiazole, and benzenesulfonamide was investigated in order to explore how it may affect the activity and selectivity of the hCA isoforms. In this respect, a series of isatin thiazolidinone hybrids have been designed and synthesized and their biological activity and selectivity on hCA I, hCA II, hCA IX, and hCA XII explored. The new compounds exhibited promising inhibitory activity results on isoforms IX and XII in the nanomolar range, which has highlighted the importance of substituents in the isatin ring and in position 3 and 5 of thiazolidinone. In particular, compound 5g was the most active toward hCA IX, while 5f was the most potent inhibitor of hCA XII within the series. When both potency and selectivity were considered, compound 5f appeared as one of the most promising. Additionally, our investigations were supported by molecular docking experiments, which have highlighted the putative binding poses of the most promising compound
5-Nitro-3-(2-(4-phenylthiazol-2-yl)hydrazineylidene)indolin-2-one derivatives inhibit HIV-1 replication by a multitarget mechanism of action
In the effort to identify and develop new HIV-1 inhibitors endowed with innovative mechanisms, we focused our attention on the possibility to target more than one viral encoded enzymatic function with a single molecule. In this respect, we have previously identified by virtual screening a new indolinone-based scaffold for dual allosteric inhibitors targeting both reverse transcriptase-associated functions: polymerase and RNase H. Pursuing with the structural optimization of these dual inhibitors, we synthesized a series of 35 new 3-[2-(4-aryl-1,3-thiazol-2-ylidene)hydrazin-1-ylidene]1-indol-2-one and 3-[3-methyl-4-arylthiazol-2-ylidene)hydrazine-1-ylidene)indolin-2-one derivatives, which maintain their dual inhibitory activity in the low micromolar range. Interestingly, compounds 1a, 3a, 10a, and 9b are able to block HIV-1 replication with EC50 < 20 µM. Mechanism of action studies showed that such compounds could block HIV-1 integrase. In particular, compound 10a is the most promising for further multitarget compound development
Exploring new scaffolds for the dual inhibition of HIV-1 RT polymerase and ribonuclease associated functions
Current therapeutic protocols for the treatment of HIV infection consist of the combination
of diverse anti-retroviral drugs in order to reduce the selection of resistant mutants and to allow for
the use of lower doses of each single agent to reduce toxicity. However, avoiding drugs interactions
and patient compliance are issues not fully accomplished so far. Pursuing on our investigation on
potential anti HIV multi-target agents we have designed and synthesized a small library of biphenylhydrazo 4-arylthiazoles derivatives and evaluated to investigate the ability of the new derivatives
to simultaneously inhibit both associated functions of HIV reverse transcriptase. All compounds
were active towards the two functions, although at different concentrations. The substitution pattern
on the biphenyl moiety appears relevant to determine the activity. In particular, compound 2-{3-
[(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl} hydrazin-1-ylidene) methyl]-4-methoxyphenyl}
benzamide bromide (EMAC2063) was the most potent towards RNaseH (IC50 = 4.5 mM)- and RDDP
(IC50 = 8.0 mM) HIV RT-associated function
MACROCYCLIC POLYESTERS.II. THE PREPARATION OF DIESTER DIAMIDE MACROCYCLES CONTAINING THE 2-AMINOBUTANOL SUB-UNITS AS POTENTIAL ANTIMICROBIAL AGENTS
This paper reports the synthesis of a novel class of diester diamide macrocycles containing 2-aminobutanol sub-units, by reacting diacyl dichloride with the aminoalcohol or its oxazastannolane derivatives. The structure of the possible isomers was assigned by spectroscopic and analytical data and, when possible by comparison with samples prepared otherwise. The ms spectra of these compounds have been studied and the fragmentation patterns and structures of the main ions are described
- …