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Abstract: Current therapeutic protocols for the treatment of HIV infection consist of the combination
of diverse anti-retroviral drugs in order to reduce the selection of resistant mutants and to allow for
the use of lower doses of each single agent to reduce toxicity. However, avoiding drugs interactions
and patient compliance are issues not fully accomplished so far. Pursuing on our investigation on
potential anti HIV multi-target agents we have designed and synthesized a small library of biphenyl-
hydrazo 4-arylthiazoles derivatives and evaluated to investigate the ability of the new derivatives
to simultaneously inhibit both associated functions of HIV reverse transcriptase. All compounds
were active towards the two functions, although at different concentrations. The substitution pattern
on the biphenyl moiety appears relevant to determine the activity. In particular, compound 2-{3-
[(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl} hydrazin-1-ylidene) methyl]-4-methoxyphenyl}
benzamide bromide (EMAC2063) was the most potent towards RNaseH (IC50 = 4.5 mM)- and RDDP
(IC50 = 8.0 mM) HIV RT-associated functions.

Keywords: HIV-RT; ribonuclease H; dual inhibitors; docking; putative binding

1. Introduction

Since the identification of HIV as the causative agent of the acquired immunodefi-
ciency syndrome (AIDS) [1,2], we have assisted in an impressive drug discovery rush. In
less than 30 years this incredible scientific effort has led to the identification of a complex
and variegated new armamentarium of antiviral agents, that specifically target HIV [3–6].
Nowadays, we have several classes of antiviral agents, targeting specific phases of the HIV
1 replication cycle. Hence, since the introduction of azidothymidine (AZT) [7] as the first
nucleoside reverse transcriptase inhibitor (NRTI), non-nucleoside reverse transcriptase
inhibitors (NNRTI) [8], protease inhibitors (PI) [9], integrase inhibitors (INI), and entry
inhibitors (EI) have been approved for clinical treatment of HIV infection [10–12]. The
current treatment of infected patients always consists of a combination of two or more
drugs, according to the presence of viral coinfections and therapy response to the different
agents [4,13]. The combination of diverse agents with different targets within the viral
replication cycle steps is mandatory, due to the likely selection of resistant mutants [5].
However, it should be considered that, although very efficient in managing the infection,
the current therapeutic strategies are not capable of eradicating the virus from the host. For
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this reason, the current therapeutic protocols are life-long poly-pharmacological therapies
that present more than one drawback. In particular, even though simplified therapies (one
pill two agents) have been introduced, the adherence to treatment and the management of
poly-drug-related toxicities are still issues to deal with [14]. In this respect, the identifica-
tion of a single agent, able to target two or more functions, related to the HIV replication
cycle, could represent an advantageous strategy to reduce both the daily number of pills
and the additive toxicity of different agents. Moreover, the use of a single agent with two
distinct yet concurring therapeutic effects is undoubtedly a winning strategy to overcome
drug-drug interactions [15]. The recent contribution of the scientific community in this
direction has been recently reviewed [16]. Interestingly, considering the key role of RT
in the HIV replication cycle, conjugated hybrid molecules [17] have been investigated
to simultaneously target the NRTI and NNRTI pockets [18,19]. Moreover, it should be
considered that HIV RT is a multifunctional enzyme with distinct associated functions,
RNA-dependent DNA polymerase (RDDDP), DNA-dependent DNA polymerase (DDDP),
and ribonuclease H (RNase H) [20]. However, despite the essential role of the RNase func-
tion in the synthesis of the proviral genome [21–23], no inhibitors targeting this associated
function have been introduced in the clinical use so far. Nevertheless, the attention of
the scientific community toward this specific anti-retroviral target has been continuously
high [24–32]. Indeed, several inhibitors of the RNase H function have been investigated
differing from structures and mechanisms of action (Figure 1) [27,28,30,33].
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Figure 1. Examples of different RNase H inhibitors: β-thujaplicinol (1), vinylogous urea (2), β-
ketoester (3), and hydrazone (4).

Most of the so far identified RNase H inhibitors, such as β-thujaplicinol (1), vinylogous
ureas (2) and β-ketoesters (3), act by chelating the Mg++ ions in the ribonuclease catalytic
site while a different mechanism of actions has been reported for hydrazone derivatives (4).
These latter compounds most probably possessed an allosteric mechanism of action and did
not exhibit complexing activity towards the Mg++ ions. Moreover, some of these hydrazone
derivatives were able to inhibit both polymerase and RNase H functions, depending on
their substitution pattern [30]. Intrigued by this behaviour, we performed a two steps
virtual screening (VS) investigation to identify potential dual inhibitors of polymerase
and RNase H functions [34]. Compound 46 (numbered as in the original paper) [34], was
identified as the most promising hit possessing dual inhibition ability towards RDDP
and RNase H functions at micro-molar concentrations, retaining full potency of inhibition
against a multidrug-resistant RT variant [35]. From this starting point, we have synthesized
several libraries of derivatives intending to optimise the dual activity on HIV RT-associated
functions and to further investigate the mechanism of action of these derivatives [36–42].
Accordingly with our design strategy, none of these new derivatives was able to chelate
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Mg++ ions, indicating that, in all probability, they do not bind the RNase H catalytic site.
Moreover, through a concerted combination of site-directed mutagenesis experiments and
computational simulations we identified two putative binding sites for our derivatives,
one, namely pocket 1, located in the palm region of RT, near the NNRTIs binding site, and
a second, namely pocket 2, located in the RNase H domain, below the catalytic RNase
H site [37–39]. Starting from these findings we have now designed and synthesised a
new library of biphenylhydrazo 4-arylthiazoles derivatives EMAC2056–2071, structurally
related with previously reported compounds to investigate their activity toward both
associated functions of HIV RT.

2. Results and Discussion

Compounds EMAC2056–2071 were synthesized according to the multi-step synthetic
pathway depicted in Scheme 1. Namely, the reaction of 5-bromo-2-methoxybenzaldehyde
(I) with differently substituted phenylboronic acids (IIa–d) under Suzuki coupling condi-
tions [40] was performed. By this synthetic procedure, intermediate compounds (IIIa–d)
were obtained in good yields ranging from 87 to 98% with the exception of the 2′-bromo-4-
methoxy-[1,1’-biphenyl]-3-carbaldehyde (IIIc). In this latter reaction the yield was always
below 24%. When 2-cyanophenylboronic acid (IIb) was used, 3’-formyl-4’-methoxy-[1,1’-
biphenyl]-2-carboxamide was formed in the coupling conditions, due to the basic reaction
media. The obtained biphenyl aldehydes were then purified and reacted with thiosemicar-
bazide in n-propanol with a catalytic amount of acetic acid. As well as in the precedent
synthetic step, yields were satisfactory and generally above 80%. Once more, in the case of
the 2-bromo substituted compound (IVc) lower yields, around 60%, were observed. To ac-
complish the cyclisation of the thiosemicarbazones, to form the thiazole ring of compounds
EMAC2056–2071, compounds IVa–d were reacted with the appropriate α-haloketones (Ve–
h). The reaction might lead to the formation of side products, due to the similar reactivity
of the thioureidic nitrogen atoms. However, by performing the cyclization in absolute
ethanol at rt, the formation of side products was not observed.
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Moreover, reaction yields were generally quantitative and, only in two cases, 2-{4-methoxy-
3-[(1E)-{2-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl] phenyl}benzamide
bromide (EMAC2060) and 2-{3-[{2-[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}
methyl]-4-methoxyphenyl}benzamide bromide (EMAC2061), lower than 80%.

All the synthesized compounds structures were confirmed by means of 1H-NMR and
13C-NMR. EMAC2056–2071 NMR spectra are reported in the materials and methods section.

RT is highly flexible enzyme; therefore, this should be considered for docking ex-
periments [43]. Indeed, NNRTI binding pocket can allow the binding of inhibitors with
different shapes and sizes. The shapes of these molecules have inspired medicinal chemists
and have been accordingly named as butterfly, horseshoe, and U-shaped conformations [44].
Hence, we carried out QM polarized ligand (QMPL) docking [45] experiments on ensemble
HIV-1 RT protein conformations available in the PDB [46]: 1vrt [47], 2zd1 [48], 1ep4 [49],
3qo9 [50], 1rti [47], 1tv6 [51], 3lp2 [52], which consider the different orientations of residues
and primer grip β12-β13 hairpin in the NNRTI binding pocket.

QM Polarized Ligand Docking workflow combines docking with ab initio methods
for ligand charges calculation within the protein environment. Subsequently, the best
poses were subjected to molecular energy minimization to consider the induced-fit pro-
tein conformation change that takes place after ligand binding and the effect of implicit
water solvation.

The best scored binding modes of the most active compound EMAC2063 are de-
picted in Figure 2 and show how the compound is predicted to bind in two of the RT
conformations considered.

Both binding modes suggest the possible interaction of the compound with poly-
merase catalytic triad (Asp110, Asp185, and Asp186) and the RNase H allosteric binding
site described the first time by Himmel for DHBNH [30]. In the first binding mode, the
ligand interacts with Lys223, with cation-π interaction, and with Trp229, an important
highly conserved residue, with a π-π interaction. Furthermore, the amido group and NH
of the hydrazino group interact with Cα and the sidechain of Asp186.

In the second binding mode, the Tyr188 sidechain is rotated in an open conformation
which allow a stacking interaction with the thiazole portion. Furthermore, the thiazole is
also involved in a T-shape π interaction with Phe227. Finally, the amide group interacts
with a hydrogen bond with Asp186.

Overall, the importance of the amide group is clear for this series of compounds.
Hence, from the docking experiments, we can hypothesize that the inhibitory activity

could be explained by the short-range inhibition of RDDP activity and a long-range inhibi-
tion of RNase H activity, most probably carried out by deviating the nucleic acid trajectory.
However, docking experiments do not exclude the possibility that the compound could
also bind in the pocket below the RNase H catalytic site, as previously described for other
compounds synthesised, but this second hypothesis does not seem to be the preferred
one [38].

Compounds EMAC2056–2071 were evaluated for their ability to inhibit RDDP and
RNase H RT-associated functions in comparison with efavirenz and b-thujaplicinol, respec-
tively, a known NNRTi and a magnesium binder inhibitor of RNase H. Inhibitory assays
were performed on a full length HIV-1 RT group M subtype B, with no pre-incubation
with the enzyme as described in the material and methods section. Their activity and
RDDP/RNase H ratio is reported in Table 1. All derivatives inhibit both functions with
IC50 values ranging from 4.5 to 57.0 and 8.0 and 88.0 µM toward RNase H and RDDP,
respectively. Within the different substitutions on the biphenyl ring, the 2-carboxamide
appeared beneficial for the dual activity. Compounds EMAC2060–2063 were the most glob-
ally active with IC50 values ranging from 4.5 to 21.5 µM and 8.0 to 27.0 µM towards RNase
H and RDDP functions. 2-bromobiphenyl (EMAC2064–2067) is well tolerated, in particular
for the RNase H function inhibition. The unsubstituted biphenyl (EMAC2056–2059) and
the 4-fluorobiphenyl (EMAC2068–2071) appeared as the substitutions most detrimental
to the dual activity. However, if we consider only the RNase H inhibition ability, these
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latter compounds exhibited a similar behaviour being relatively active only when the
unsubstituted biphenyl or the 4-fluorobiphenyl substitutions are accompanied by the intro-
duction of a 4-methoxyphenyl or 4-nitrophenyl moiety in position 4 of the thiazole ring,
regarding compounds EMAC2056, EMAC2059, EMAC2068, and EMAC2071. Altogether
these data highlight that the 2-[2-({4-methoxy-[1,1′-biphenyl]-3-yl}methylidene)hydrazin-1-
yl]-4-phenyl-1,3-thiazole scaffold represents a valid starting point for the design of dual
inhibitors of HIV RT associated functions.
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Table 1. Activity of compounds EMAC2056–2071 on HIV-1 RT-associated enzymatic functions RNase
H and RDDP.

Compound R R’ RNase H
a IC50 (µM)

RDDP
b IC50 (µM)

EMAC2056 H 4-OCH3 19.5 ± 5.5 36.0 ± 5.0
EMAC2057 H 3,4-Cl 57.0 ± 5.0 88.0 ± 12.0
EMAC2058 H 4-Cl 46.0 ± 1.0 56.5 ± 9.5
EMAC2059 H 4-NO2 12.8 ± 4.3 39.5 ± 11.5
EMAC2060 2-CONH2 4-OCH3 21.5 ± 3.5 27.0 ± 1.0
EMAC2061 2-CONH2 3,4-Cl 6.5 ± 2.5 19.5 ± 0.5
EMAC2062 2-CONH2 4-Cl 8.0 ± 2.0 17.0 ± 2.0
EMAC2063 2-CONH2 4-NO2 4.5 ± 0.5 8.0 ± 0.0
EMAC2064 2-Br 4-OCH3 13.0 ± 4.0 32.5 ± 2.5
EMAC2065 2-Br 3,4-Cl 15.0 ± 1.0 53.5 ± 15.5
EMAC2066 2-Br 4-Cl 47.0 ± 3.0 71.5 ± 6.5
EMAC2067 2-Br 4-NO2 27.0 ± 5.0 30.0 ± 3.0
EMAC2068 4-F 4-OCH3 29.5 ± 3.5 61.5 ± 8.5
EMAC2069 4-F 3,4-Cl 52.5 ± 10.5 66.0 ± 2.0
EMAC2070 4-F 4-Cl 55.5 ± 1.5 59.0 ± 6.0
EMAC2071 4-F 4-NO2 19.0 ± 1.0 47.5 ± 11.5
Efavirenz // // * 0.023 ± 0.002

β-Thujaplicinol // // 0.19 ± 0.03 *
a Compound concentration required to reduce the HIV-1 RT-associated RNase H activity by 50%. b Compound
concentration required to reduce the HIV-1 RT-associated RNA-dependent DNA-polymerase activity by 50%.
* Not tested; //—Not applicable.

3. Materials and Method
3.1. Chemistry

Unless otherwise noted, starting materials, reagents and solvent were obtains from
commercial suppliers are reagent grade and were used without purification.

All melting point were determined by the capillary method on a Büchi-540 capillary
melting points apparatus (BÜCHI Labortechnik AG, Meierseggstrasse, Switzerland) and
are uncorrected.

All samples were measured in DMSO-d6 solvent at 278.1 K temperature on a Bruker
AVANCE III spectrometer (Billerica, MA, USA).

In the signal assignments the proton and carbon chemical shifts are referred to the
solvent (1H: d = 2.49 ppm, 13C downfield methyl signal: d = 34.89 ppm, respectively).
Chemical shifts are reported in parts per million (ppm, δ units). Coupling constants are
reported in units of Hertz (Hz). Splitting patterns are designed as s, singlet; d, doublet; t,
triplet; dd, double doublet; m, multiplet; b, broad.

All reactions were carried out with the use of the standard techniques and were
monitored by thin-layer chromatography (TLC) on silica gel plates (60F-254, E. Merck,
Merck Group, Darmstadt, Germany), and spots were visualised by UV light.

3.1.1. Synthetic Procedures
Preparation of 4-Methoxy-[1,1′-Biphenyl]-3-Carbaldehyde (IIIa)

5-bromo-2-methoxybenzaldehyde (I) was dissolved in DME and Pd(PPh3)4 was added
to the solution at R.T. under argon flow. After stirring the mixture at RT for 10 min,
phenylboronic acid and aq 2 M Na2CO3 solution were added and the reaction mixture
was refluxed at 110 ◦C (oil bath temperature). After 24 hours, when the reaction was
completed (monitored by TLC, eluent: n-hexane-ethyl acetate 4:1), the reaction mixture was
cooled and poured onto ice (100 g). The solution was filtered on Celite and the filtrate was
washed with ethyl acetate (100 mL). The aqueous phase was extracted with ethyl acetate
(3 × 50 mL).
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The combined organic phase layers were washed with water (1 × 40 mL) and dried
over Na2SO4 evaporated under reduced pressure. The red glue residue was purified by
flash column chromatography on silica gel (eluent n-hexane-ethyl acetate, 5:1).

The desired compound has a blue fluorescence visible with UV lamp and it is a
crystalline white solid: Rf = 0.82 (exane-ethyl acetate, 1:1); HPLC: 97.336%; m.p. 77 ◦C–
78 ◦C; yield: 98.8%. 1H-NMR (500 MHz, DMSO): δ 3.97 (s, 3H, OCH3), 7.34 (d, 1H, Ar-CH,
J = Hz 8.5), 7.36 (m, 1H, J = 8 Hz Ar-CH) 7.46 (t, 2H, J = 8 Hz Ar-CH) 7.65 (d, 2H, J = 8 Hz
Ar-CH), 7.93 (s, 1H, J = 2.5 Hz, Ar-CH), 7.98 (d, 1H, J = 8 Hz, J = 2.5, Ar-CH) 10.4 (s, 1H,
CHO). 13C-NMR (100 MHz, DMSO): δ 56.2 (1C, OCH3), 113.5 (1C, phenyl), 124.3, (1C,
phenyl), 125.6 (1C, phenyl), 126.3 (2C, phenyl), 127.4 (1C, phenyl), 129.0 (2C, phenyl), 132.6
(1C, phenyl), 134.5 (1C, phenyl), 138.7 (1C, phenyl), 161.0 (1C, phenyl), 189.1 (1C, aldehyde).

According to this procedure, the following compounds were prepared:

3′-formyl-4′-methoxy-[1,1′-biphenyl]-2-carboxamide (IIIb). Rf = 0.29 (exane-ethyl acetate, 1:7);
HPLC: 60.27% (36.7% O=PPh3) m.p. 140 ◦C; yield: 87.2%. 1H-NMR (500 MHz, DMSO): δ
3.96 (s, 1H, OCH3), 7.34 (bs, 1H, NH2), 7.29 (d, 1H, J = 8.5 Hz, Ar-CH), 7.37 (m, 1H, Ar-CH),
7.40 (m, 1H, Ar-CH), 7.45 (m, 1H, Ar-CH), 7.48 (m, 1H, Ar-CH), 7.70 (m, 1H, J = 8.5 Hz,
J = 2.5 Hz, Ar-CH), 7.71 (bs, 1H, NH2), 7.74 (d, 1H, J = 2.5, Ar-CH), 10.39 (s, 1H, COH).

2′-bromo-4-methoxy-[1,1′-biphenyl]-3-carbaldehyde (IIIc). Rf = 0.43 (hexane:ethyl acetate, 4:1);
HPLC: 94.15%; m.p. 106 ◦C–107 ◦C; yield: 23.36%. 1H-NMR (500 MHz, DMSO): δ 3.98
(s, 3H, OCH3), 7.32 (m, 1H, J = 8 Hz, Ar-CH), 7.33 (d, 1H, J = 8.5 Hz, Ar-CH), 7.40 (m,
1H, J = 8 Hz, J = 2 Hz, J = 6 Hz, Ar-CH), 7.47 (m, 1H, J = 2 Hz, Ar-CH), 7.69 (d, 1H, J = 2,
Ar-CH), 7.71 (dd, 1H, J = 8.5 Hz, J = 2 Hz, Ar-CH), 7.74 (m, 1H, Ar-CH), 10.39 (s, 1H, COH).
13C-NMR (100 MHz, DMSO): δ 56.2 (1C, OCH3), 112.7 (1C, phenyl), 121.8 (1C, phenyl),
123.6 (1C, phenyl), 128.2 (1C, phenyl), 128.3 (1C, phenyl),129.6 (1C, phenyl), 131.4 (1C,
phenyl), 132.7 (2C, phenyl), 133.1 (1C, phenyl), 140.4 (1C, phenyl), 161.0 (1C, phenyl), 188.9
(1C, COH).

4′-fluoro-4-methoxy-[1,1′-biphenyl]-3-carbaldehyde (IIId). Rf = 0.41 (hexane:ethyl acetate, 2,5:1);
HPLC: 99.038%; m.p. 81 ◦C; yield: 88.60%. 1H-NMR (500 MHz, DMSO): δ 3.96 (s, 3H,
OCH3), 7.28 (m, 2H, J = 9 Hz, Ar-CH), 7.33 (d, 1H, J = 8.5 Hz, Ar-CH), 7.70 (m, 2H, Ar-CH),
7.90 (d, 1H, J = 2.5 Hz, Ar-CH), 7.96 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz, Ar-CH), 10.39 (s, 1H,
CHO). 13C-NMR (100 MHz, DMSO): δ 56.2 (1C, OCH3), 113.5 (1C, phenyl), 115.8 (2C,
phenyl), 124.3 (1C, phenyl), 125.6 (1C, phenyl), 128.3 (2C, phenyl), 131.6 (1C, phenyl), 134.4
(1C, phenyl), 135.2 (1C, phenyl), 160.9 (1C, phenyl), 162.7 (1C, phenyl), 189.1 (1C, CHO).

2-((4-methoxy-[1,1′-biphenyl]-3-yl)methylene)hydrazine-1-carbothioamide (IVa). 5-phenyl-2-
methoxybenzaldehyde (IIIa) and thiosemicarbazide in equimolar amounts were intro-
duced in a three-necked flask and dissolved with n-propanol at 50 ◦C. Then 5 drops of
acetic acid were added to the reaction mixture as a catalyst. After a few minutes the
formation of an abundant white precipitate is observed (this indicates the formation of
the thiosemicarbazone). The reaction was monitored by TLC (hexane:ethyl acetate, 1:1).
After 6 hours the reaction was completed and the solid filtered. The compound is a white
fluffy solid: Rf = 0.71 (hexane:ethyl acetate 1:1); HPLC: 95.933%; m.p. 223.3–223.8 ◦C; yield:
97%. 1H-NMR (500 MHz, DMSO): δ 3.87 (s, 3H, OCH3), 7.15 (d, 1H, J = 8.5 Hz, Ar-CH),
7.32 (m, 1H, Ar-CH), 7.44 (m, 2H, Ar-CH), 7.68 (dd, 1H, J = 8.5 Hz, Ar-CH), 7.72 (m, 2H,
J = 8.5 Hz, Ar-CH) 8.18–8.19 (brs, 2H, NH2), 8.37 (d, 1H, Ar-CH), 8.45 (s, 1H, CH=N), 11.45
(s, 1H, NH). 13C-NMR (100 MHz, DMSO): δ 55.9 (1C, OCH3), 112.2 (1C, phenyl), 122.5 (1C,
phenyl), 123,8 (1C, phenyl), 126.5 (2C, phenyl), 126.9 (1C, phenyl), 128.7 (2C, phenyl), 129.4
(1C, phenyl), 132.7 (1C, phenyl), 137.8 (1C, CH=N), 139.4 (1C, phenyl), 157.3 (1C, phenyl),
177.8 (1C, NH-CSNH2).

According to the above described procedure, the following compounds have been
prepared:

3′-[[(carbamothioylamino)imino]methyl]-4′-methoxy-[1,1′-biphenyl]-2-carboxamide (IVb). Rf = 0.26
(hexane:ethyl acetate, 1:4); HPLC: 88.22%; m.p. 234–235 ◦C; yield: 82.48%. 1H-NMR



Molecules 2021, 26, 3821 8 of 16

(500 MHz, DMSO): δ 3.86 (s, 3H, OCH3), 7.09 (d, 1H, J = 8.5 Hz, Ar-CH), 7.33 (bs, 1H, NH2),
7.40 (dd, 1H, Ar-CH), 7.40 (m, 1H, Ar-CH), 7.41 (m, 2H, Ar-CH), 7.46 (m, 1H, Ar-CH), 7.66
(bs, 1H, NH2), 7.88 (bs, 1H, NH2), 8.15 (d, 1H, J = 2.5 Hz), 8.18 (bs, 1H, NH2), 8.43 (s, 1H,
CH=N), 11.46 (s, 1H, NH-CSNH2). 13C-NMR (100 MHz, DMSO): δ 55.8 (1C, OCH3), 111.4
(1C, phenyl), 121.9 (1C, phenyl), 125.8 (1C, phenyl), 126.7 (1C, phenyl), 127.3 (1C, phenyl),
129.0 (1C, phenyl), 130.0 (1C, phenyl), 131.2 (2C, phenyl), 137.5 (1C, phenyl), 137.8 (1C,
CH=N), 138.2 (1C, phenyl),157.1 (1C, phenyl),171.3 (1C, CONH2), 177.8 (1C, NH-CSNH2).

(2-methoxy-5-(2-bromo)phenylphenyl)methylidene]amino] thiourea (IVc). Rf = 0.725 (hexane:ethyl
acetate, 1:1); HPLC: 93.98%; m.p. 219–220 ◦C; yield: 62.45%. 1H-NMR (500 MHz, DMSO):
δ 3.88 (s, 3H, OCH3), 7.13 (d, 1H, J = 9 Hz), 7.39 (m, 1H, J = 1.5 Hz), 7.39 (m, 2H), 7.45
(m, 1H, J = 1 Hz), 7.72 (m, 1H, J = 8 Hz, J = 1.5 Hz), 8.10–8.06 (bs, 2H, NH), 8.14 (d, 1H,
J = 2 Hz), 8.44 (s, 1H, CH=N), 11.43 (s, 1H, NH). 13C-NMR (100 MHz, DMSO): δ 55.9 (1C,
OCH3), 111.2 (1C, phenyl), 121.9 (1C, phenyl), 122.2 (1C, phenyl), 126.6 (1C, phenyl), 127.8
(1C, phenyl), 129.1 (1C, phenyl), 131.6 (1C, phenyl), 132.0 (1C, phenyl), 132.8 (1C, phenyl),
133.2 (1C, phenyl), 137.5 (1C, CH=N), 141.4 (1C, phenyl), 157.2 (1C, phenyl), 177.8 (1C,
NH-CSNH2).

[{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene} amino] thiourea (IVd). Rf = 0.63 (hex-
ane:ethyl acetate, 1:1); HPLC: 99.98%; m.p. 217–218 ◦C; yield: 84%. NMR: 1H-NMR
(500 MHz, DMSO): δ 3.87 (s, 3H, OCH3), 7.14 (d, 1H, J = 9, Ar-CH), 7.26 (m, 2H, J = 8.5 Hz,
Ar-CH), 7.67 (dd, 1H, J = 8.5 Hz, J = 2 Hz, Ar-CH), 7.76 (m, 2H, J = 8.5 Hz, J = 2 Hz, Ar-CH),
8.21–8.18 (brd, 2H, NH2), 8.35 (d, 1H, J = 2.5 Hz, Ar-CH), 8.44 (s, 1H, CHN), 11.46 (s,
1H, NH). 13C-NMR (100 MHz, DMSO): δ 55.9 (1C, OCH3), 112.2 (1C, phenyl), 115.4 (1C,
phenyl), 115.5 (1C, phenyl), 122.5 (1C, phenyl), 123.7 (1C, phenyl), 128.4 (1C, phenyl), 128.5
(1C, phenyl), 129.3 (1C, phenyl), 131.7 (1C, phenyl), 135.8 (1C, phenyl), 137.6 (1C, CH=N),
157.3 (1C, phenyl), 161.6 (1C, phenyl), 177.8 (1C, NH-CSNH2).

Preparation of 2-[2-[(2-Methoxy-5-Phenylphenyl)methylidene]hydrazin-1-yl]-4-(4-
Methoxyphenyl)-1,3-Thiazole Bromide (EMAC2056)

2-((4-Methoxy-[1,1′-biphenyl]-3-yl)methylene)hydrazine-1-carbothioamide (IVa) (1
eq) was introduced in a flask and dissolved in ethanol. To this solution phenacyl bromide (1
eq) was added and the mixture stirred at r.t.. The reaction was monitored by TLC (hexane :
ethyl acetate, 1:1). When completion of the reaction was reached, the obtained white solid
was filtered. The desired compound was a white crystalline solid: Rf = 0.59 (hexane : ethyl
acetate, 1:1); m.p. 209 ◦C decomposition; yield: 81.46%. 1H-NMR (500 MHz, DMSO): δ 3.78
(s, 3H, OCH3), 3.90 (s, 3H, OCH3), 6.97 (m, 2H, J = 9), 7.15 (s, 1H, CH thiazole), 7.19 (d, 1H,
J = 9), 7.36 (m, 1H), 7.48 (m, 2H), 7.62 (m, 2H, J = 7.5), 7.67 (dd, 1H, J = 8.5, J = 2.5), 7.78 (m,
2H, J = 9), 8.03 (d, 1H, J = 2.5), 8.42 (s, 1H, CH=N). 13C-NMR (100 MHz, DMSO): δ 55.2
(1C, OCH3), 55.9 (1C, OCH3), 101.7 (1C, thiazole), 112.5 (1C, phenyl), 114.0 (2C, phenyl),
122.6 (1C, phenyl), 122.8 (1C, phenyl), 126.2 (2C, phenyl), 127.0 (2C, phenyl), 127.1 (1C,
phenyl), 128.7 (1C, phenyl), 129.1 (2C, phenyl), 132.8 (1C, phenyl), 137.2 (1C, CH=N), 139.4
(1C, phenyl), 139.6 (1C, phenyl), 149.4 (1C, thiazole), 156.7 (1C, phenyl), 158.9 (1C, phenyl),
168.2 (1C, thiazole).

According to the above described procedure the following compounds were synthe-
sized:

4-(3,4-dichlorophenyl)-2-[2-[(2-methoxy-5-phenylphenyl)methylidene]hydrazin-1-yl]-1,3-thiazole
bromide (EMAC2057). Rf = 0.79 (hexane : ethyl acetate, 1:1); m.p. 213 ◦C decomposition;
yield: 92.08%. 1H-NMR (500 MHz, DMSO): δ 3.90 (s, 3H, OCH3), 7.19 (d, 1H, J = 8.5 Hz,
Ar-CH), 7.35 (m, 2H, Ar-CH), 7.48 (m, 2H, Ar-CH), 7.55 (s, 1H, CH thiazole), 7.62 (m, 1H,
Ar-CH), 7.66 (d, 1H, J = 8.5 Hz), 7.67 (d, 1H, 8.5), 7.84 (dd, 1H, J = 8.5 Hz, J = 2 Hz), 8.01 (d,
1H, J = 2.5 Hz), 8.08 (d, 1H, J = 2 Hz), 8.40 (s, 1H, CH=N), 12.2 (brs, 1H, NH). 13C-NMR
(100 MHz, DMSO): δ 55.9 (1C, OCH3), 106.0 (1C, thiazole), 112.5 (1C, phenyl), 122.6 (1C,
phenyl), 122.7 (1C, phenyl), 125.6 (1C, phenyl), 126.2 (2C, phenyl), 127.1 (1C, phenyl), 127.2
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(1C, phenyl), 129.0 (2C, phenyl), 129.1 (1C, phenyl), 129.7 (1C, phenyl), 130.9 (1C, phenyl),
131.4 (1C, phenyl), 132.8 (1C, phenyl), 135.2 (1C, phenyl), 136.9 (1C, CH=N), 139.6 (1C,
phenyl), 147.9 (1C, thiazole), 156.7 (1C, phenyl), 168.5 (1C, thiazole).

4-(3-chlorophenyl)-2-[2-[(2-methoxy-5-phenylphenyl)methylidene]hydrazin-1-yl]-1,3-thiazole bro-
mide (EMAC2058). Rf = 0.77 (hexane : ethyl acetate, 1:1); m.p. 215 ◦C decomposition; yield:
91.27%. 1H-NMR (500 MHz, DMSO): δ 3.90 (s, 3H, OCH3), 7.19 (d, 1H, J = 8.5 Hz, Ar-CH),
7.36 (m, 1H, Ar-CH), 7.39 (s, 1H, CH thiazole), 7.46 (m, 2H, Ar-CH), 7.48 (m, 2H, Ar-CH),
7.62 (d, 2H, J = 7.5 Hz, Ar-CH), 7.67 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz, Ar-CH), 7.87 (d, 2H,
J = 8.5 Hz, Ar-CH), 8.02 (d, 1H, J = 2.5 Hz, Ar-CH), 8.40 (s, 1H, CH=N, Ar-CH), 12.24 (brs,
1H, NH, Ar-CH). 13C-NMR (100 MHz, DMSO): δ 55.9 (1C, OCH3), 101.6 (1C, thiazole),
111.7 (1C, phenyl), 122.7 (1C, phenyl), 122.7 (1C, phenyl), 126.3 (2C, phenyl), 127.1 (1C,
phenyl), 127.3 (2C, phenyl), 128.6 (2C, phenyl), 129.0 (2C, phenyl), 129.1 (1C, phenyl), 131.9
(1C, phenyl), 132.8 (1C, phenyl), 133.4 (1C, phenyl), 136.8 (1C, CH=N), 139.6 (1C, phenyl),
149,1 (1C, thiazole), 156.7 (1C, phenyl), 168.4 (1C, thiazole).

4-(4-nitrophenyl)-2-[2-[(2-methoxy-5-phenylphenyl)methylidene]hydrazin-1-yl]-1,3-thiazole bro-
mide (EMAC2059). Rf = 0.69 (hexane : ethyl acetate, 1:1); m.p. 208 ◦C decomposition; yield:
89.39%. 1H-NMR (500 MHz, DMSO): δ 3.90 (s, 3H, OCH3), 7.19 (d, 1H, J = 8.5 Hz, Ar-CH),
7.36 (m, 1H, Ar-CH), 7.48 (m, 2H, Ar-CH), 7.63 (d, 2H, J = 7.5 Hz, Ar-CH), 7.67 (dd, 1H,
J = 8.5 Hz, J = 2.5 Hz, Ar-CH), 7.71 (s, 1H, thiazole), 8.02 (d, 1H, J = 2.5 Hz, Ar-CH), 8.11
(d, 2H, J = 9, Ar-CH), 8.27 (d, 2H, J = 9, Ar-CH), 8.41 (s, 1H, CH=N), 12.32 (brs, 1H, NH).
13C-NMR (100 MHz, DMSO): δ 55.9 (1C, OCH3), 108.6 (1C, thiazole), 112.5 (1C, phenyl),
122.6 (1C, phenyl), 122.8 (1C, phenyl), 124.1 (2C, phenyl), 126.3 (2C, phenyl), 126.3 (2C,
phenyl), 127.1 (1C, phenyl), 129.0 (2C, phenyl), 129.2 (1C, phenyl), 132.8 (1C, phenyl), 137.1
(1C, CH=N), 139.6 (1C, phenyl), 140.6 (1C, phenyl), 146.2 (1C, phenyl), 148.5 (1C, thiazole),
156.7 (1C, phenyl), 168.7 (1C, thiazole).

2-{4-methoxy-3-[(1E)-{2-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl] phenyl}
benzamide bromide (EMAC2060). Rf = 0.31 (hexane : ethyl acetate, 1:4); m.p. 203 ◦C de-
composition; yield: 70.5%. 1H-NMR (500 MHz, DMSO): δ 3.78 (s, 3H, OCH3), 3.90 (s, 3H,
OCH3), 6.50 (bs, 1H, CONH2), 6.96 (d, 2H, J = 9 Hz, Ar-CH), 7.13 (m, 2H, thiazole + Ar-CH),
7.30–7.50 (m, 8H, Ar-CH), 7.72 (brs, 1H, CONH2), 7.86 (d, 1H, J = 2.5 Hz), 12.19 (brs, 1H,
NH). 13C-NMR (100 MHz, DMSO): δ 55.2 (1C, OCH3), 55.8 (1C, OCH3), 106.0 (1C, thiazole),
111.6 (1C, phenyl), 122.0 (1C, phenyl), 124.8 (1C, phenyl), 126.8 (1C, phenyl), 127.3 (2C,
phenyl), 127.6 (1C, phenyl), 128.6 (2C, phenyl), 129.3 (1C, phenyl), 129.7 (1C, phenyl), 130.7
(1C, phenyl), 131.9 (1C, phenyl), 133.1 (1C, phenyl), 133.4 (1C, phenyl), 136.9 (1C, CH=N),
137.3 (1C, phenyl), 138.3 (1C, phenyl), 149.1 (1C, thiazole), 156.4 (1C, phenyl), 168.4 (1C,
thiazole), 171.1 (1C, CONH2).

2-{3-[{2-[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4-methoxyphenyl}
benzamide bromide (EMAC2061). Rf = 0.41 (hexane : ethyl acetate, 1:4); m.p. 221 ◦C decom-
position; yield: 77.71%. 1H-NMR (500 MHz, DMSO): δ 3.89 (s, 3H, OCH3), 7.13 (d, 1H,
J = 9 Hz, Ar-CH), 7.32 (bs, 1H, NH2), 7.37 (m, 1H, Ar-CH), 7.39 (m, 1H, Ar-CH), 7.41 (m,
1H, Ar-CH), 7.49 (m, 2H, Ar-CH), 7.53 (s, 1H, thiazole), 7.66 (d, 1H, J = 8.5 Hz, Ar-CH), 7.72
(brs, 1H, NH2), 7.83 (dd, 1H, J = 8.5, J = 2 Hz, Ar-CH), 7.87 (d, 1H, J = 2.5 Hz, Ar-CH), 8.08
(d, 1H, J = 2 Hz, Ar-CH), 8.38 (s, 1H, CH=N), 12.21 (brs, 1H, NH). 13C-NMR (100 MHz,
DMSO): δ 55.8 (1C, OCH3), 106.0 (1C, thiazole), 111.6 (1C, phenyl), 122.0 (1C, phenyl), 124.8
(1C, phenyl), 125.6 (1C, phenyl), 126.8 (1C, phenyl), 127.1 (1C, phenyl), 127.6 (1C, phenyl),
129.3 (1C, phenyl), 129.6 (1C, phenyl), 129.7 (1C, phenyl), 130.7 (1C, phenyl), 130.9 (1C,
phenyl), 131.4 (1C, phenyl), 133.1 (1C, phenyl), 135.2 (1C, phenyl), 136.9 (1C, CH=N), 137.3
(1C, phenyl), 138.3 (1C, phenyl), 147.9 (1C, thiazole), 156.4 (1C, phenyl), 168.5 (1C, thiazole),
171.1 (1C, CONH2).

2-{3-[{2-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]hydrazin-1-ylidene}methyl]-4-methoxyphenyl}benzamide
bromide (EMAC2062). Rf = 0.38 (hexane : ethyl acetate, 1:4); m.p. 222 ◦C decomposition;
yield: 84.74%. 1H-NMR (500 MHz, DMSO): δ 3.89 (s,3H, OCH3), 7.13 (d, 1H, J = 9 Hz, Ar-
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CH), 7.32 (bs, 1H, CONH2), 7.37 (s, 1H, thiazole), 7.37 (m, 1H, Ar-CH), 7.40 (m, 1H, Ar-CH),
7.41 (dd, 1H, Ar-CH), 7.44 (m, 1H, Ar-CH), 7.46 (m, 2H, Ar-CH), 7.49 (m, 2H, Ar-CH), 7.72
(brs, 1H, CONH2), 7.86 (m, 2H, Ar-CH), 7.87 (s, 1H, Ar-CH), 12.19 (bs, 1H, NH). 13C-NMR
(100 MHz, DMSO): δ 55.8 (1C, OCH3), 106.0 (1C, thiazole), 111.6 (1C, phenyl), 122.0 (1C,
phenyl), 124.8 (1C, phenyl), 126.8 (1C, phenyl), 127.3 (2C, phenyl), 127.6 (1C, phenyl), 128.6
(2C, phenyl), 129.3 (1C, phenyl), 129.7 (1C, phenyl), 130.7 (1C, phenyl), 131.9 (1C, phenyl),
133.1 (1C, phenyl), 133.4 (1C, phenyl), 136.9 (1C, CH=N), 137.3 (1C, phenyl), 138.3 (1C,
phenyl), 149.1 (1C, thiazole), 156.4 (1C, phenyl), 168.4 (1C, thiazole), 171.1 (1C, CONH2).

2-{3-[(2-{4-[4-nitrophenyl]-1,3-thiazol-2-yl}hydrazin-1-ylidene)methyl]-4-methoxyphenyl}benzamide
bromide (EMAC2063). Rf = 0.33 (hexane : ethyl acetate, 1:4); m.p. 208 ◦C decomposition;
yield: 89.39%. 1H-NMR (500 MHz, DMSO): δ 3.89 (s,3H, OCH3), 7.13 (d, 1H, J = 9 Hz,
Ar-CH), 7.32 (bs, 1H, CONH2), 7.38 (m, 1H, Ar-CH), 7.40 (m, 1H, Ar-CH), 7.41 (dd, 1H,
Ar-CH), 7.44 (m, 1H, Ar-CH), 7.49 (m, 1H, Ar-CH), 7.70 (s, 1H, thiazole), 7.73 (brs, 1H,
CONH2), 7.88 (d, 1H, J = 2.5 Hz, Ar-CH), 8.11 (m, 2H, J = 9 Hz, Ar-CH), 8.27 (m, 2H,
J = 8.5 Hz, Ar-CH), 8.39 (s, 1H, CH=N), 12.28 (bs, 1H, NH). 13C-NMR (100 MHz, DMSO):
δ 55.9 (1C, OCH3), 108.6 (1C, thiazole), 111.7 (1C, phenyl), 121.9 (1C, phenyl), 124.1 (2C,
phenyl), 124.8 (1C, phenyl), 126.3 (2C, phenyl), 126.8 (1C, phenyl), 127.6 (1C, phenyl), 129.3
(1C, phenyl), 129.7 (1C, phenyl), 130.8 (1C, phenyl), 133.1 (1C, phenyl), 137.1 (1C, CH=N),
137.3 (1C, phenyl), 138.3 (1C, phenyl), 140.7 (1C, phenyl), 146.2 (1C, phenyl), 148.5 (1C,
thiazole), 156.5 (1C, phenyl), 168.7 (1C, thiazole), 171.1 (1C, CONH2).

2-{[5-(2-bromophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(4-methoxyphenyl)-1,3-thiazole
bromide (EMAC2064). Rf = 0.70 (hexane : ethyl acetate, 1:1); m.p. 193 ◦C decomposition;
yield: 83.65%. 1H-NMR (500 MHz, DMSO): δ 3.78 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 6.97
(m, 2H, J = 8.5 Hz, Ar-CH), 7.16 (s, 1H, thiazole), 7.18 (d, 2H, J = 8.5, Ar-CH), 7.30 (m, 2H,
Ar-CH), 7.64 (dd, 2H, J = 8.5 Hz, J = 2.5 Hz, Ar-CH), 7.77 (m, 2H, J = 8.5 Hz, Ar-CH), 7.98
(d, 1H, J = 2 Hz, Ar-CH), 8.41 (s, 1H, CH=N), 12.28 (brs, 1H, NH). 13C-NMR (100 MHz,
DMSO): δ 55.2 (1C, OCH3), 55.9 (1C, OCH3), 101.7 (1C, thiazole), 112.5 (1C, phenyl), 114.0
(2C, phenyl), 115.7 (1C, phenyl), 115.9 (1C, phenyl), 122.7 (1C, phenyl), 122.7 (1C, phenyl),
126.9 (1C, phenyl), 127.0 (2C, phenyl), 128.2 (1C, phenyl), 128.3 (1C, phenyl), 129.1 (1C,
phenyl), 131.8 (1C, phenyl), 136.1 (1C, phenyl), 137.1 (1C, CH=N), 149.4 (1C, thiazole), 156.7
(1C, phenyl), 158.9 (1C, phenyl), 161.6 (1C, phenyl), 168.2 (1C, thiazole).

2-{[5-(2-bromophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(3,4-dicholophenyl)-1,3-thiazole
bromide (EMAC2065). Rf = 0.86 (hexane : ethyl acetate, 1:1); m.p. 220 ◦C decomposition;
yield: 91.36%. 1H-NMR (500 MHz, DMSO): δ 3.91 (s, 3H, OCH3), 7.18 (d, 1H, J = 9 Hz), 7.32
(m, 1H), 7.40 (dd, 1H, J = 9 Hz, J = 2.5 Hz), 7.42 (m, 1H, J = 7.5 Hz, J = 2 Hz), 7.47 (m, 1H,
J = 1 Hz) 7.51 (s, 1H thiazole), 7,56 (d,1H, J = 8.5 Hz), 7.75 (m, 1H, J = 6.5 Hz, J = 1.5 Hz),
7.80 (d, 1H, J = 2.5 Hz), 7.82 (dd, 1H, J = 6.5 Hz, J = 2 Hz), 8.07 (d, 1H, J = 2 Hz), 8.39 (s, 1H,
CH=N), 12.24 (bs, 1H, NH). 13C-NMR (100 MHz, MHz, DMSO): δ 55.9 (1C, OCH3), 106.0
(1C, thiazole), 111.7 (1C, phenyl), 121.9 (1C, phenyl), 122.0 (1C, phenyl), 125.5 (1C, phenyl),
125.6 (1C, phenyl), 127.1 (1C, phenyl), 128.1 (1C, phenyl), 129.3 (1C, phenyl), 129.7 (1C,
phenyl), 130.9 (1C, phenyl), 131.4 (1C, phenyl), 131.4 (1C, phenyl), 131.5 (1C, phenyl), 132.9
(1C, phenyl),133.1 (1C, phenyl), 135.2 (1C, phenyl), 136.7 (1C, CH=N), 141.2 (1C, phenyl),
147.9 (1C, thiazole), 156.6 (1C, phenyl), 168.4 (1C, thiazole).

2-{[5-(2-bromophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(4-cholophenyl)-1,3-thiazole
bromide (EMAC2066). Rf = 0.82 (hexane : ethyl acetate, 1:1); m.p. 218 ◦C decomposition;
yield: 98%. 1H-NMR (500 MHz, DMSO): δ 3.91 (s, 3H, OCH3), 7.18 (d, 1H, J = 8.5 Hz),
7.32 (m, 1H), 7.35 (s, 1H, thiazole), 7.40 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz), 7.42 (m, 1H), 7.45
(m, 2H, J = 8.5 Hz), 7.48 (m, 1H, J = 1.5 Hz), 7.75 (m, 1H, J = 8 Hz, J = 2 Hz), 7.8 (d, 1H,
J = 2 Hz), 7.85 (m, 2H, J = 8.5 Hz, J = 2 Hz), 8.4 (s, 1H, CH=N), 12.21 (bs, 1H, NH). 13C-NMR
(100 MHz, DMSO): δ 55.9 (1C, OCH3), 104.5 (1C, thiazole), 111.7 (1C, phenyl), 121.9 (1C,
phenyl), 122.0 (1C, phenyl), 125.5 (1C, phenyl), 127.2 (2C, phenyl), 128.1 (1C, phenyl), 128.6
(2C, phenyl), 129.3 (1C, phenyl), 131.4 (1C, phenyl),131.5 (1C, phenyl), 131.9 (1C, phenyl),
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131.9 (1C, phenyl), 133.1 (1C, phenyl), 133.4 (1C, phenyl), 136.6 (1C, CH=N), 141.2 (1C,
phenyl), 149.1 (1C, thiazole), 156.6 (1C, phenyl), 168.3 (1C, thiazole).

2-{[5-(2-bromophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(4-nitrophenyl)-1,3-thiazole
bromide (EMAC2067). Rf = 0.81 (hexane : ethyl acetate, 1:1); m.p. 233 ◦C decomposition;
yield: 91.2%. 1H-NMR (500 MHz, DMSO): δ 3.91 (s, 3H, OCH3), 7.18 (d, 1H, J = 8.5 Hz),
7.32 (m, 1H), 7.40 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz), 7.42 (m, 1H), 7.48 (m, 1H), 7.68 (s, 1H,
thiazole), 7.75. (m, 1H, J = 8 Hz, J = 1 Hz), 7.81 (d, 1H, J = 2.5 Hz), 8.10 (m, 2H, J = 9 Hz), 8.26
(m, 2H, J = 8.5 Hz), 8.40 (s, 1H, CH=N), 12.32 (bs, 1H, NH). 13C-NMR (100 MHz, DMSO):
δ 55.9 (1C, OCH3), 108.6 (1C, thiazole), 111.7 (1C, phenyl), 121.9 (1C, phenyl), 122.0 (1C,
phenyl), 124.1 (2C, phenyl), 125.5 (1C, phenyl), 126.3 (2C, phenyl), 128.1 (1C, phenyl), 129.3
(1C, phenyl), 131.4 (1C, phenyl), 131.6 (1C, phenyl), 132.9 (1C, phenyl), 133.1 (1C, phenyl),
136.8 (1C, CH=N), 140.6 (1C, phenyl), 141.2 (1C, phenyl), 146.2 (1C, phenyl), 148.5 (1C,
thiazole), 156.6 (1C, phenyl), 168.6 (1C, thiazole).

2-[2-{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-4-(4-methoxyphenyl)-1,3-
thiazole bromide (EMAC2068). Rf = 0.775 (hexane : ethyl acetate, 1:1); m.p. 186 ◦C decompo-
sition; yield: 82.28%. 1H-NMR (500 MHz, DMSO): δ 3.78 (s, 3H, OCH3), 3.90 (s, 3H, OCH3),
6.97 (m, 2H, J = 8.5 Hz), 7.16 (s, 1H, thiazole), 7.18 (d, 1H, J = 8.5 Hz), 7.30 (m, 2H), 7.64
(dd, 1H, J = 8.5 Hz, J = 2.5 Hz), 7.77 (m, 2H, J = 8.5 Hz), 7.98 (d, 1H, J = 2 Hz), 8.41 (s, 1H,
CH=N), 12.28 (brs, 1H, NH). 13C-NMR (100 MHz, DMSO): δ 55.2 (1C, OCH3), 55.9 (1C,
OCH3), 101.7 (1C, thiazole), 112.5 (1C, phenyl), 114.0 (2C, phenyl), 115.8 (2C oF, phenyl,
J = 21 Hz), 122.7 (1C, phenyl), 122.8 (1C, phenyl), 126.9 (1C, phenyl), 127.0 (2C, phenyl),
128.2 (2C, phenyl), 129.1 (1C, phenyl), 131.8 (1C, phenyl), 136.1 (1C, phenyl), 137.1 (1C,
CH=N), 149.4 (1C, thiazole), 156.7 (1C, phenyl), 158.9 (1C, phenyl), 161.6 (1C-F, phenyl,
J = 245 Hz), 168.2 (1C, thiazole).

4-(3,4-dichlorophenyl)-2-[-2-{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-1,3-
thiazole bromide (EMAC2069). Rf = 0.91 (hexane : ethyl acetate, 1:1); m.p. 225 ◦C decomposi-
tion; yield: 87.75%. 1H-NMR (500 MHz, DMSO): δ 3.90 (s, 3H, OCH3), 7.18 (d,1H, J = 9 Hz),
7.30 (m, 2H), 7.55 (s, 1H, thiazole), 7.64 (dd, 1H), 7.65 (m, 2H), 7.66 (d, 1H), 7.83 (dd, 1H,
J = 8.5 Hz, J = 2 Hz), 7.97 (d, 1H, J = 2 Hz), 8.08 (d, 1H, J = 2 Hz), 8.39 (s, 1H, CHN), 12.26
(brs, 1H, NH). 13C-NMR (100 MHz, DMSO): δ 55.9 (1C, OCH3), 106.0 (1C, thiazole), 112.5
(1C, phenyl), 115.8 (2C oF, phenyl, J = 21 Hz), 122.6 (1C, phenyl), 122.7 (1C, phenyl), 125.6
(1C, phenyl), 127.2 (1C, phenyl), 128.2 (1C, phenyl), 128.3 (1C, phenyl), 129.7 (2C, phenyl),
130.9 (1C, phenyl), 131.4 (1C, phenyl), 131.8 (1C, phenyl), 135.2 (1C, phenyl), 136.1 (1C,
phenyl), 136.9 (1C, CH=N), 147.9 (1C, thiazole), 156.7 (1C, phenyl), 161.6 (1C-F, phenyl,
J = 245 Hz), 168.5 (1C, thiazole).

4-(4-chlorophenyl)-2-[-2-{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-1,3-thiazole
bromide (EMAC2070). Rf = 0.875 (hexane : ethyl acetate, 1:1); m.p. 235 ◦C decomposition;
yield: 86.9%. 1H-NMR (500 MHz, DMSO): δ 3.90 (s, 3H, OCH3), 7.18 (d, 1H, J = 8.5 Hz),
7.30 (m, 2H, J = 8.5 Hz), 7.39 (s, 1H, thiazole), 7.46 (m, 2H, J = 9 Hz), 7.64 (dd, 1H), 7.65 (m,
2H), 7.87 (m, 2H, J = 8.5 Hz), 7.97 (d, 1H, J = 2 Hz), 8.40 (s, 1H, CHN), 12.25 (brs, 1H, NH).
13C-NMR (100 MHz, DMSO): δ 55.9 (1C, OCH3), 104.6 (1C, thiazole), 112.5 (1C, phenyl),
115.8 (2C oF, phenyl, J = 21 Hz), 122.7 (1C, phenyl), 127.3 (1C, phenyl), 128.2 (2C, phenyl),
128.3 (1C, phenyl), 128.6 (2C, phenyl), 129.1 (2C, phenyl), 131.8 (1C, phenyl), 132.0 (1C,
phenyl), 133.4 (1C, phenyl), 136.1 (1C, phenyl), 136.8 (1C, CH=N), 149.1 (1C, thiazole), 156.7
(1C, phenyl), 161.6 (1C-F, phenyl, J = 245 Hz), 168.4 (1C, thiazole).

[(4-{2-[2-{[5-(4-fluorophenyl)-2-methoxyphenyl]methylidene}hydrazin-1-yl]-1,3-thiazol-4-yl}phenyl)
nitroso]oxidanol bromide (EMAC2071). Rf = 0.85 (hexane : ethyl acetate, 1:1); m.p. 237 ◦C
decomposition; yield: 93.93%. 1H-NMR (500 MHz, DMSO): δ 3.90 (s, 3H, OCH3), 7.18 (d,
1H, J = 8.5 Hz), 7.30 (m, 2H), 7.65 (m, 3H), 7.72 (s, 1H, thiazole), 7.97 (d, 1H, J = 2.5 Hz), 8.11
(m, 2H, J = 9 Hz), 8.27 (m, 2H, J = 9 Hz), 8.40 (s, 1H, CHN), 12.32 (brs, 1H, NH). 13C-NMR
(100 MHz, DMSO): δ 55.9 (1C, OCH3), 108.7 (1C, thiazole), 112.5 (1C, phenyl), 115.8 (2C
oF, phenyl, J = 21 Hz), 122.6 (1C, phenyl), 124.1 (2C, phenyl), 126.4 (2C, phenyl), 128.2 (1C,
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phenyl), 128.3 (1C, phenyl), 129.1 (2C, phenyl), 131.8 (1C, phenyl), 136.1 (1C, phenyl), 137.0
(1C, CH=N), 140.6 (1C, phenyl), 146.2 (1C, phenyl), 148.5 (1C, thiazole), 156.7 (1C, phenyl),
161.6 (1C-F, phenyl, J = 245 Hz), 168.6 (1C, thiazole).

3.2. Biological Evaluation
3.2.1. HIV-1 RT-Associated DNA Polymerase-Independent RNase H Activity
Determination

The full length HIV-1 RT group M subtype B was expressed and purified as previously
described [38]. The HIV RT-associated RNase H activity was measured as described [53].
Briefly, the reaction was performed in in 100 µL volume containing 50 mM Tris HCl pH
7.8, 6 mM MgCl2, 1 mM dithiothreitol (DTT), 80 mM KCl, 250 nM hybrid RNA/DNA
(50-GTTTTCTTTTCCCCCCTGAC-30-Fluorescein, 50-CAAAAG AAAAGGGGGGACUG-
30-Dabcyl) reaction was started by the addition of 20 ng of HIV-1 wild type (wt) RT and
incubated for 1h at 37 ◦C. Reactions were stopped by the addition of EDTA and products
were measured with a Perkin–Elmer Victor 3 multilabel counter plate reader (Waltham,
MA, USA) at excitation–emission wavelength of 490/528 nm (Table 1).

3.2.2. HIV-1 RT-Associated RNA Dependent DNA Polymerase Activity Determination

The HIV-1 RT-associated RNA-Dependent DP activity was measured as previously
described [54,55]. Briefly, 20 ng of HIV-1 wt RT were incubated for 30 min at 37 ◦C in 25 µL
volume containing 60 mM Tris-HCl pH 8.1, 8 mM MgCl2, 60 mM KCl, 13 mM DTT, 2.5 mM
poly(A)-oligo(dT), 100 mM dTTP. The enzymatic reaction was stopped by the addition
of EDTA. Reaction products were detected by picogreen addition and measured with a
Perkin–Elmer Victor 3 multilabel counter plate reader at excitation–emission wavelength
of 502/523 nm.

3.3. Molecular Medelling
3.3.1. Ligand Preparation

Theoretical 3D models of the compounds EMAC2056–2071 were built utilizing Mae-
stro GUI [20] and considering both E and Z configurations. Then, the ligands’ most stable
conformation was obtained by molecular mechanics conformational analysis with Macro-
model software version 9.2. (Schrodinger LLC, New York, NY, USA) [56], considering
MMFFs [57] as force field and solvent effects by adopting the implicit solvation model
Generalized Born/Surface Area (GB/SA) water [58]. The simulations were performed
allowing 5000 steps Monte Carlo analysis with Polak–Ribier Conjugate Gradient (PRCG)
method and a convergence criterion of 0.05 kcal/(mol·Å).

3.3.2. Protein Preparation

The coordinates for RT enzymes were taken from the RCSB Protein Data Bank [20]
(PDB codes 1vrt [47], 2zd1 [48], 1ep4 [49], 3qo9 [50], 1rti [47], 1tv6 [51], 3lp2 [52]). The
proteins were prepared by using the Maestro Protein Preparation Wizard protocol _EN-
REF_20 [20] and discarding the water molecules co-crystallized.

3.3.3. Docking Experiments

QM-Polarized Ligand Docking default settings were applied [59]. The docking
grids were defined by centering on W229 and Q500. The grid boxes of the same size
(45 × 45 × 45 Å) covered overall the whole p66 subunit. The best solutions were subjected
to the post-docking procedure. To better take into account the induced fit phenomena, the
most energy-favoured generated complexes were fully optimized with 5000 steps of the
Polak–Ribier conjugate gradient (PRCG) minimization method using OPLS2005 force field.
The optimization process was performed up to the derivative convergence criterion equal
to 0.1 kJ/(mol·Å)−1.
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3.3.4. Figures

The resulting best complexes were considered for the binding modes graphical analy-
sis with LigandScout (inte:Ligand, Vienna, Austria) [60,61], and Ligand Interaction module
included in Maestro GUI [20].

4. Conclusions

A series of new biphenylhydrazo 4-arylthiazoles derivatives has been synthesized to
evaluate the potential of these derivatives as HIV-RT dual associated functions inhibitors.
Their activity was compared with the known NNRTi efavirenz and with the RNase H
inhibitor β-thujaplicinol. Both reference compounds, efavirenz and β-thujaplicinol, were
more potent with respect to the new EMAC derivatives, but were not able to perform a dual
inhibition of the two associated RT functions, being either RDDP or RNase H inhibitors. On
the contrary, although with some differences, all EMAC compounds were able to inhibit
both RDDP and RNase H functions indicating that they might represent the starting point
for the design of new and more efficient RT full activity inhibitors. Derivative EMAC2063
was the most potent derivative with an IC50 of 4.5 and 8.0 µM towards RNase H and RDDP,
respectively. Docking experiments highlighted the relevant role of the 2-amido substituent
in stabilising the ligand/enzyme complex. All together these data prompted us towards
further investigation to better characterize the mechanism of action and clearly define the
binding mode of such derivatives in order to acquire more detailed information that will
be used for the design of more efficient RT inhibitors.
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