672 research outputs found

    Probing the Electronic Structure of Bilayer Graphene by Raman Scattering

    Full text link
    The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure

    Narrow-band photodetection based on M-plane GaN films

    Get PDF
    Rapid identification of a range of hazardous airborne biological and chemical agents requires simultaneous detection at several specific wavelengths, and consequently a set of photodetectors with very narrow-band spectral responsivity. We demonstrate two ultraviolet photodetection configurations based on strained M-plane GaN films on LiAlO2(100) substrates grown by molecular-beam epitaxy with a detection bandwidth below 8 nm. The optical band gap of the film depends on the orientation of the linear polarization of the incident light relative to the c-axis of GaN, which lies in the film plane. The first configuration consists of a polarizationsensitive planar Schottky photodetector and a filter. An orthogonal alignment of the c-axis of the photodetector and the filter produces a detection system with a peak responsivity at 360 nm and a bandwidth of 6 nm. The second one consists of two planar Schottky photodetectors with their c-axes oriented perpendicular to each other. The difference signal between the two photodetectors produces a peak responsivity at 358 nm and a bandwidth of 7.3 nm

    Investigation of the surface integrity of mechano-chemically finished powder metallurgy gears

    Get PDF
    Automotive gears are facing stringent requirements regarding weight and functional surfaces, especially in view of the electric powertrain. To achieve these demands, powder metallurgy gears need to be finished using grinding, and in certain cases, mechano-chemical treatments. With regards to the latter, five different triboconditioning strategies based on vibratory tub finishing and/or centrifugal barrel finishing were considered and their effects on the surface integrity and friction behavior were investigated. Triboconditioning improved the surface roughness after grinding and resulted in higher compressive residual stresses. Additionally, microscopic observations of the surface topography were carried out. The lowest friction coefficients were observed for triboconditioning with a doped material (tribofilm) on the finished surface

    Redshifted iron emission and absorption lines in the Chandra X-ray spectrum of Centaurus A

    Full text link
    Cen A hosts the closest active galactic nucleus to the Milky Way, which makes it an ideal target for investigating the dynamical processes in the vicinity of accreting supermassive black holes. In this paper, we present 14 Chandra HETGS spectra of the nucleus of Cen A that were observed throughout 2022. We compared them with each other, and contrasted them against the two previous Chandra HETGS spectra from 2001. This enabled an investigation into the spectral changes occurring on timescales of months and 21 years. All Chandra spectra could be well fitted by an absorbed power law with a strong and narrow Fe Kα\alpha line, a leaked power law feature at low energies, and Si and S Kα\alpha lines that could not be associated with the central engine. The flux of the continuum varied by a factor of 2.74±0.052.74\pm0.05 over the course of the observations, whereas the Fe line only varied by 18.8±8.8%18.8\pm8.8\%. The photon index increased over 21 years, and the Hydrogen column density varied significantly within a few months as well. The Fe Kα\alpha line was found at a lower energy than expected from the Cen A redshift, amounting to an excess velocity of 326−94+84 km s−1326^{+84}_{-94}~\mathrm{km}~\mathrm{s}^{-1} relative to Cen A. We investigated warped accretion disks, bulk motion, and outflows as possible explanations of this shift. The spectra also featured ionized absorption lines from Fe XXV and Fe XXVI, describing a variable inflow.Comment: 19 pages, 9 figures, went through peer review, and was accepted for publication by the The Astrophysical Journa

    Energy Restriction during Childhood and Early Adulthood and Ovarian Cancer Risk

    Get PDF
    Dietary energy restriction may protect against cancer. In parts of the Netherlands, mostly in larger cities, periods of chronically impaired nutrition and even severe famine (Hunger Winter 1944–1945) existed during the 1930s and World War II (1940–1945). We studied the association between energy restriction during childhood and early adulthood on the risk of ovarian cancer later in life. In 1986, the Netherlands Cohort Study was initiated. A self-administered questionnaire on dietary habits and other cancer risk factors was completed by 62,573 women aged 55–69 years at baseline. Follow-up for cancer was established by record linkage to the Netherlands Cancer Registry. After 16.3 years of follow-up, 364 invasive epithelial ovarian cancer cases and 2220 subcohort members (sampled from the total cohort directly after baseline) with complete information confounders were available for case-cohort analyses. In multivariable analysis, ovarian cancer risk was lower for participants with an unemployed father during the 1930s (Hazard Ratio (HR), 0.70; 95% Confidence Interval (CI), 0.47–1.06) compared to participants with an employed father as well as for participants living in a city during World War II (HR, 0.69; 95% CI, 0.54–0.90) compared to participants living in the country-side. Residence in a Western City during the famine (Hunger Winter) was not associated with a decreased risk. Our results show a relation between proxy variables for modest energy restriction over a longer period of time during childhood or early adulthood and a reduced ovarian cancer risk

    The proportion of postmenopausal breast cancer cases in the Netherlands attributable to lifestyle-related risk factors

    Get PDF
    We aimed to estimate the proportion of Dutch postmenopausal breast cancer cases in 2010 that is attributable to lifestyle-related risk factors. We calculated population attributable fractions (PAFs) of potentially modifiable risk factors for postmenopausal breast cancer in Dutch women aged >50 in 2010. First, age-specific PAFs were calculated for each risk factor, based on their relative risks for postmenopausal breast cancer (from meta-analyses) and age-specific prevalence in the population (from national surveys) around the year 2000, assuming a latency period of 10 years. To obtain the overall PAF, age-specific PAFs were summed in a weighted manner, using the age-specific breast cancer incidence rates (2010) as weights. 95 % confidence intervals for PAF estimates were derived by Monte Carlo simulations. Of Dutch women >40 years, in 2000, 51 % were overweight/obese, 55 % physically inactive (<5 days/week 30 min activity), 75 % regularly consumed alcohol, 42 % ever smoked cigarettes and 79 % had a low-fibre intake (<3.4 g/1000 kJ/day). These factors combined had a PAF of 25.7 % (95 % CI 24.2–27.2), corresponding to 2,665 Dutch postmenopausal breast cancer cases in 2010. PAFs were 8.8 % (95 % CI 6.3–11.3) for overweight/obesity, 6.6 % (95 % CI 5.2–8.0) for alcohol consumption, 5.5 % (95 % CI 4.0–7.0) for physical inactivity, 4.6 % (95 % CI 3.3–6.0) for smoking and 3.2 % (95 % CI 1.6–4.8) for low-fibre intake. Our findings imply that modifiable risk factors are jointly responsible for approximately one out of four Dutch postmenopausal breast cancer cases. This suggests that incidence rates can be lowered substantially by living a more healthy lifestyle

    Type Ia Supernovae as Stellar Endpoints and Cosmological Tools

    Full text link
    Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the SN Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now new large surveys are bringing about a paradigm shift --- we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modeling, breakthroughs in understanding all aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version. Shortened, update
    • …
    corecore