9,518 research outputs found

    A comparison of the distribution of actin and tubulin in the mammalian mitotic spindle as seen by indirect immunofluorescence

    Get PDF
    Rabbit antibodies against actin and tubulin were used in an indirect immunofluorescence study of the structure of the mitotic spindle of PtK1 cells after lysis under conditions that preserve anaphase chromosome movement. During early prophase there is no antiactin staining associated with the mitotic centers, but by late prophase, as the spindle is beginning to form, a small ball of actin antigenicity is found beside the nucleus; After nuclear envelope breakdown, the actiactin stains the region around each mitotic center, and becomes organized into fibers that run between the chromosomes and the poles. Colchicine blocks this organization, but does not disrupt the staining at the poles. At metaphase the antiactin reveals a halo of ill-defined radius around each spindle pole and fibers that run from the poles to the metaphase plate. Antitubulin shows astral rays, fibers running from chromosomes to poles, and some fibers that run across the metaphase plate. At anaphase, there is a shortening of the antiactin-stained fibers, leaving a zone which is essentially free of actin-staining fluorescence between the separating chromosomes. Antitubulin stains the region between chromosomes and poles, but also reveals substantial fibers running through the zone between separating chromosomes. Cells fixed during cytokinesis show actin in the region of the cleavage furrow, while antitubulin reveals the fibrous spindle remnant that runs between daughter cells. These results suggest that actin is a component of the mammalian mitotic spindle, that the distribution of actin differs from that of tubulin and that the distributions of these two fibrous proteins change in different ways during anaphase

    Empowering women farmers to participate in agricultural research processes

    Get PDF

    `Mass without mass' from thin shells in Gauss-Bonnet gravity

    Get PDF
    Five tensor equations are obtained for a thin shell in Gauss-Bonnet gravity. There is the well known junction condition for the singular part of the stress tensor intrinsic to the shell, which we also prove to be well defined. There are also equations relating the geometry of the shell (jump and average of the extrinsic curvature as well as the intrinsic curvature) to the non-singular components of the bulk stress tensor on the sides of the thin shell. The equations are applied to spherically symmetric thin shells in vacuum. The shells are part of the vacuum, they carry no energy tensor. We classify these solutions of `thin shells of nothingness' in the pure Gauss-Bonnet theory. There are three types of solutions, with one, zero or two asymptotic regions respectively. The third kind of solution are wormholes. Although vacuum solutions, they have the appearance of mass in the asymptotic regions. It is striking that in this theory, exotic matter is not needed in order for wormholes to exist- they can exist even with no matter.Comment: 13 pages, RevTex, 8 figures. Version 2: includes discussion on the well-defined thin shell limit. Version 3: typos fixed, a reference added, accepted for publication in Phys. Rev.

    Clustering of the Diffuse Infrared Light from the COBE DIRBE maps. III. Power spectrum analysis and excess isotropic component of fluctuations

    Full text link
    The cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 mic we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (b>20deg|b| > 20\deg) and away from the center (90deg<l<270deg90\deg< l <270\deg) we extrapolate the amplitude of the fluctuations to cosecb=0|b|=0. We find a positive intercept of δFrms=15.57.0+3.7,5.93.7+1.6,2.40.9+0.5,2.00.5+0.25\delta F_{\rm rms} = 15.5^{+3.7}_{-7.0},5.9^{+1.6}_{-3.7}, 2.4^{+0.5}_{-0.9}, 2.0^{+0.25}_{-0.5} nW/m2/sr at 1.25, 2.2,3.5 and 4.9 mic respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.62.4+1.27.6^{+1.2}_{-2.4} nW/m2/sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. For 2\deg< \theta < 15^\deg, a power-spectrum analysis yields firm upper limits of (\theta/5^\deg) \times\delta F_{\rm rms} (\theta) < 6, 2.5, 0.8, 0.5 nW/m2/sr at 1.25, 2.2, 3.5 and 4.9 mic respectively. From 10-100 mic, the upper limits <1 nW/m2/sr.Comment: Ap.J., in press. 69 pages including 24 fig

    The Star Formation Law in Nearby Galaxies on Sub-Kpc Scales

    Full text link
    (Abridged) We present a comprehensive analysis of the relationship between star formation rate surface density (SFR SD) and gas surface density (gas SD) at sub-kpc resolution in a sample of 18 nearby galaxies. We use high resolution HI data from THINGS, CO data from HERACLES and BIMA SONG, 24 micron data from the Spitzer Space Telescope, and UV data from GALEX. We target 7 spiral galaxies and 11 late-type/dwarf galaxies and investigate how the star formation law differs between the H2-dominated centers of spiral galaxies, their HI-dominated outskirts and the HI-rich late-type/dwarf galaxies. We find that a Schmidt-type power law with index N=1.0+-0.2 relates the SFR SD and the H2 SD across our sample of spiral galaxies, i.e., that H2 forms stars at a constant efficiency in spirals. The average molecular gas depletion time is ~2*10^9 yrs. We interpret the linear relation and constant depletion time as evidence that stars are forming in GMCs with approximately uniform properties and that the H2 SD may be more a measure of the filling fraction of giant molecular clouds than changing conditions in the molecular gas. The relationship between total gas SD and SFR SD varies dramatically among and within spiral galaxies. Most galaxies show little or no correlation between the HI SD and the SFR SD. As a result, the star formation efficiency (SFE = SFR SD / gas SD) varies strongly across our sample and within individual galaxies. We show that in spirals the SFE is a clear function of radius, while the dwarf galaxies in our sample display SFEs similar to those found in the outer optical disks of the spirals. Another general feature of our sample is a sharp saturation of the HI SD at ~9 M_sol/pc^2 in both the spiral and dwarf galaxies.Comment: Accepted for publication in the AJ special THINGS issue. For a high-resolution version visit: http://www.mpia.de/THINGS/Publications.htm

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    Mid-Infrared Emission from E+A Galaxies in the Coma Cluster

    Full text link
    We have used ISO to observe at 12μ\mum seven E+A galaxies plus an additional emission line galaxy, all in the Coma cluster. E+A galaxies lacking narrow emission lines have 2.2μ\mum to 12μ\mum flux density ratios or limits similar to old stellar populations (typical of early-type galaxies). Only galaxies with emission lines have enhanced 12μ\mum flux density. Excess 12μ\mum emission is therefore correlated with the presence of on-going star formation or an active galactic nucleus (AGN). By comparing the current star formation rates with previous rates estimated from the Balmer absorption features, we divide the galaxies into two groups: those for which star formation has declined significantly following a dramatic peak \sim 1 Gyr ago; and those with a significant level of ongoing star formation or/and an AGN. There is no strong difference in the spatial distribution on the sky between these two groups. However, the first group has systemic velocities above the mean cluster value and the second group below that value. This suggests that the two groups differ kinematically. Based on surveys of the Coma cluster in the radio, the IRAS sources, and galaxies detected in Hα\alpha emission, we sum the far infrared luminosity function of galaxies in the cluster. We find that star formation in late type galaxies is probably the dominant component of the Coma cluster far infrared luminosity. The presence of significant emission from intracluster dust is not yet firmly established. The member galaxies also account for most of the far infrared output from nearby rich clusters in general.Comment: AAS Latex, accepted for publication in Ap

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code CC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then CC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    High Resolution Mid-Infrared Imaging of Ultraluminous Infrared Galaxies

    Get PDF
    Observations of ultraluminous infrared galaxies (ULIRGs) with an achieved resolution approaching the diffraction limit in the mid-infrared from 8 - 25 μ\mum using the Keck Telescopes are reported. We find extremely compact structures, with spatial scales of <0.3< 0.3'' (diameter) in six of the seven ULIRGs observed. These compact sources emit between 30% and 100% of the mid-infrared energy from these galaxies. We have utilized the compact mid-infrared structures as a diagnostic of whether an AGN or a compact (100 -- 300 pc) starburst is the primary power source in these ULIRGs. In Markarian 231, the upper limit on the diameter of the 12.5 μ\mum source, 0.13'', shows that the size of the infrared source must increase with increasing wavelength, consistent with AGN models. In IRAS 05189-2524 and IRAS 08572+3915 there is strong evidence that the source size increases with increasing wavelength. This suggests heating by a central source rather than an extended luminosity source, consistent with the optical classification as an AGN. The compact mid-infrared sources seen in the other galaxies cannot be used to distinguish the ultimate luminosity source. If these ULIRGs are powered by compact starbursts, the star formation rates seen in the central few hundred parsecs far exceed the global rates seen in nearby starburst galaxies, and approach the surface brightness of individual clusters in nearby starburst galaxies.Comment: 33pages, 6 tables, 5 figures, Accepted for publication in A

    Re-theorizing the “Structure–Agency” Relationship: Figurational Theory, Organizational Change and the Gaelic Athletic Association

    Get PDF
    This article illustrates how the figurational sociology associated with Norbert Elias provides an alternative theoretical framework for explaining the relationship between, ‘individualorganization- society’ and organizational change, and in so doing transverses what is conceived as a false dichotomy between structure and agency. Through an historical case study of the Gaelic Athletic Association in Ireland, the ‘individual-organization-society’ relationship is conceptualized as overlapping figurations and organizational change is explained as figurational dynamics—the shifting social interdependencies between the individuals and groups comprising an organization, between that organization and other organizations, between social groups on a higher level of integration and competition. In tandem with this, the article illustrates how changes in the sources of power and identity are connected with these figurational dynamics
    corecore