73 research outputs found

    Depth in Coxeter groups of type BB

    Get PDF
    The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length

    Detection of Candida species in vaginal samples in a clinical laboratory setting.

    Get PDF
    OBJECTIVE: To present the detection rates of Candida species in vaginal samples from patients visiting physicians. METHODS: The presence of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis in 3978 vaginal swabs from patients in six US states was detected by PCR amplification. RESULTS: Candida DNA was detected in 33.1% of the population studied. Of the 1316 positive samples, 80.2% contained C. albicans, 14.3% contained C. glabrata, 5.9% contained C. parapsilosis and 8.0% contained C. tropicalis. Comparing samples by patients' state of residence revealed an association with the detection of C. glabrata (p = 0.029). Comparing samples by patients' age revealed a decrease in the overall detection of Candida (p < 0.001) and C. albicans (p < 0.001), concomitant with an increase in the detection of C. glabrata (p < 0.001) and C. parapsilosis (p = 0.025). CONCLUSIONS: These results provide geographic- and age-specific data on four Candida species associated with vaginitis

    Prevalence of Bordetella pertussis and Bordetella parapertussis in Samples Submitted for RSV Screening

    Get PDF
    Background: The clinical presentation of Bordetella pertussis can overlap with that of respiratory syncytial virus (RSV); however, management differs.Hypothesis: First, the prevalence of B. pertussis is less than 2% among patients screened for RSV, and second the prevalence of B. parapertussis is also less than 2% among these patients.Methods: Nasal washings submitted to a clinical laboratory for RSV screening were tested for B. pertussis and B. parapertussis, using species-specific real-time polymerase chain reaction (PCR) assays. These were optimized to target conserved regions within a complement gene and the CarB gene, respectively. A Bordetella spp. genus-specific real-time PCR assay was designed to detect the Bhur gene of B. pertussis, B. parapertussis, and B. bronchiseptica. RSV A and B subtypes were tested by reverse transcription-PCR.Results: Four hundred and eighty-nine clinical samples were tested. There was insufficient material to complete testing for one B. pertussis, 10 RSV subtype A, and four RSV subtype B assays. Bordetella pertussis was detected in 3/488 (0.6%) (95% CI 0.1% to 1.8%), while B. parapertussis was detected in 5/489 (1.0%) (95% CI 0.3% to 2.4%). Dual infection of B. pertussis with RSV and of B. parapertussis with RSV occurred in two and in three cases respectively. RSV was detected by PCR in 127 (26.5%).Conclusion: The prevalence of B. pertussis in nasal washings submitted for RSV screening was less than 2%. The prevalence of parapertussis may be higher than 2%. RSV with B. pertussis and RSV with B. parapertussis coinfection do occur.[WestJEM. 2008;9:135-140.

    Oncoprotein DEK as a tissue and urinary biomarker for bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bladder cancer is a significant healthcare problem in the United States of America with a high recurrence rate. Early detection of bladder cancer is essential for removing the tumor with preservation of the bladder, avoiding metastasis and hence improving prognosis and long-term survival. The objective of this study was to analyze the presence of DEK protein in voided urine of bladder cancer patients as a urine-based bladder cancer diagnostic test.</p> <p>Methods</p> <p>We examined the expression of DEK protein by western blot in 38 paired transitional cell carcinoma (TCC) bladder tumor tissues and adjacent normal tissue. The presence of DEK protein in voided urine was analyzed by western blot in 42 urine samples collected from patients with active TCC, other malignant urogenital disease and healthy individuals.</p> <p>Results</p> <p>The DEK protein is expressed in 33 of 38 bladder tumor tissues with no expression in adjacent normal tissue. Based on our sample size, DEK protein is expressed in 100% of tumors of low malignant potential, 92% of tumors of low grade and in 71% of tumors of high grade. Next, we analyzed 42 urine samples from patients with active TCC, other malignant urogenital disease, non-malignant urogenital disease and healthy individuals for DEK protein expression by western blot analysis. We are the first to show that the DEK protein is present in the urine of bladder cancer patients. Approximately 84% of TCC patient urine specimens were positive for urine DEK.</p> <p>Conclusion</p> <p>Based on our pilot study of 38 bladder tumor tissue and 42 urine samples from patients with active TCC, other malignant urogenital disease, non-malignant urogenital disease and healthy individuals; DEK protein is expressed in bladder tumor tissue and voided urine of bladder cancer patients. The presence of DEK protein in voided urine is potentially a suitable biomarker for bladder cancer and that the screening for the presence of DEK protein in urine can be explored as a noninvasive diagnostic test for bladder cancer.</p

    Depth in Coxeter groups of type BB

    No full text
    International audienceThe depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length.La statistique profondeur a Ă©tĂ© introduite par Petersen et Tenner pour tout groupe de Coxeter WW. Elle est dĂ©finie pour tout w∈Ww \in W Ă  partir de ses factorisations en produit de rĂ©flexions (non nĂ©cessairement simples). Pour le type BB, nous introduisons un algorithme calculant la profondeur, et donnant une formule explicite pour cette statistique. On utilise par ailleurs cet algorithme pour caractĂ©riser tous les Ă©lĂ©ments ayant une profondeur Ă©gale Ă  leur longueur. Ces derniers s’avĂšrent ĂȘtre les Ă©lĂ©ments pleinement commutatifs “hauts-et-bas” introduits par Stembridge. Nous donnons enfin une caractĂ©risation des Ă©lĂ©ments dont la longueur absolue, la profondeur et la longueur coĂŻncident
    • 

    corecore