5 research outputs found

    Spray-Dried Proliposome Microparticles for High-Performance Aerosol Delivery Using a Monodose Powder Inhaler

    Get PDF
    Proliposome formulations containing salbutamol sulphate (SS) were developed using spray drying, and the effects of carrier type (lactose monohydrate (LMH) or mannitol) and lipid to carrier ratio were evaluated. The lipid phase comprised soy phosphatidylcholine (SPC) and cholesterol (1:1), and the ratios of lipid to carrier were 1:2, 1:4, 1:6, 1:8 or 1:10 w/w. X-ray powder diffraction (XRPD) revealed an interaction between the components of the proliposome particles, and scanning electron microscopy (SEM) showed that mannitol-based proliposomes were uniformly sized and spherical, whilst LMH-based proliposomes were irregular and relatively large. Using a two-stage impinger (TSI), fine particle fraction (FPF) values of the proliposomes were higher for mannitol-based formulations, reaching 52.6%, which was attributed to the better flow properties when mannitol was used as carrier. Following hydration of proliposomes, transmission electron microscopy (TEM) demonstrated that vesicles generated from mannitol-based formulations were oligolamellar, whilst LMH-based proliposomes generated 'worm-like' structures and vesicle clusters. Vesicle size decreased upon increasing carrier to lipid ratio, and the zeta potential values were negative. Drug entrapment efficiency (EE) was higher for liposomes generated from LMH-based proliposomes, reaching 37.76% when 1:2 lipid to carrier ratio was used. The in vitro drug release profile was similar for both carriers when 1:6 lipid to carrier ratio was used. This study showed that spray drying can produce inhalable proliposome microparticles that can generate liposomes upon contact with an aqueous phase, and the FPF of proliposomes and the EE offered by liposomes were formulation-dependent

    Carbon nanotubes drug delivery system for cancer treatment

    No full text
    There has been a predominant interest in using nanotechnology for drug delivery applications, especially for cite-specific targeting. Recently, interest in the potential of carbon nanotubes (CNT) to deliver bio-molecules for a range of biomedical applications, particularly drug delivery into living systems for cancer diagnostics and therapy has massively grown. Pure CNTs have inherent limitations, such as poor solubility, which limit their use in biomedical applications. A myriad of approaches to enhance their solubility have been investigated. An attractive approach has involved the functionalization of CNTs (f-CNT) in order to improve their solubility and biocompatibility in aqueous solutions. This chapter provides an introductory overview of carbon nanotubes and their use as drug delivery systems for cancer treatment

    A comprehensive production method of self-cryoprotected nano-liposome powders

    No full text
    This study provided a convenient approach for large scale production of hydrogenated soya phosphatidylcholine nano-liposome powders using beclometasone dipropionate as a model drug and sucrose as proliposome carrier. Fluid-bed coating was employed to manufacture proliposomes by coating sucrose with the phospholipid (5%, 10%, 15% and 20% weight gains), followed by hydration, size reduction using high pressure homogenization, and freeze-drying to yield stable nano-vesicles. High pressure homogenization was compared with probe-sonication in terms of liposome size, zeta potential and drug entrapment. Furthermore, the effect of freeze-drying on vesicle properties generated using both size reduction methods was evaluated. Results have shown that high-pressure homogenization followed by freeze-drying and rehydration tended to yield liposomes smaller than the corresponding vesicles downsized via probe-sonication, and all size measurements were in the range of 72.64-152.50 nm, indicating that freeze-drying was appropriate, regardless of the size reduction technique. The liposomes, regardless of size reduction technique and freeze drying had slightly negative zeta potential values or were almost neutral in surface charge. The entrapment efficiency of BDP in homogenized liposomes was found to increase following freeze-drying, hence the drug entrapment efficiency values in rehydrated liposomes were 64.9%, 57%, 69.5% and 64.5% for 5%, 10%, 15% and 20% weight gains respectively. In this study, we have reported a reliable production method of nano-liposomes based on widely applicable industrial technologies such as fluid-bed coating, high pressure homogenization and freeze-drying. Moreover, sucrose played a dual role as a carrier in the proliposome formulations and as a cryoprotectant during freeze-drying.Scopu

    Advances in nasal drug delivery systems

    No full text
    Nasal drug delivery has been around for centuries and employed both leisure and recreations and also for the treatment of various conditions such as migraine, decongestion, sinusitis, rhinitis, and in emergency. The route is convenient and popular. It has numerous advantages such as direct delivery to the (central nervous system) CNS, high bioavailability, large surface area, needles are not used, and no special skills are required to deliver the drug. The method is non-invasive and provides direct drug transfer from nose to brain via olfactory nerve, hence it bypasses the blood-brain barrier for CNS effect and first pass effect while drug absorbed via nasal mucosa for systemic effect. It is also suitable for drugs that are unstable in an acid environment. The two main mechanisms in nasal drug delivery are discussed along with various factors involved such as physicochemical properties of the drug, formulations factors, and the physiological and anatomical characteristics. Various barriers effecting nasal drug delivery are also discussed. The delivery of microspheres and liposome formations using various nasal devices is also discussed

    A comprehensive production method of self-cryoprotected nano-liposome powders

    No full text
    This study provided a convenient approach for large scale production of hydrogenated soya phosphatidylcholine nano-liposome powders using beclometasone dipropionate as a model drug and sucrose as proliposome carrier. Fluid-bed coating was employed to manufacture proliposomes by coating sucrose with the phospholipid (5%, 10%, 15% and 20% weight gains), followed by hydration, size reduction using high pressure homogenization, and freeze-drying to yield stable nano-vesicles. High pressure homogenization was compared with probe-sonication in terms of liposome size, zeta potential and drug entrapment. Furthermore, the effect of freeze-drying on vesicle properties generated using both size reduction methods was evaluated. Results have shown that high-pressure homogenization followed by freeze-drying and rehydration tended to yield liposomes smaller than the corresponding vesicles downsized via probe-sonication, and all size measurements were in the range of 72.64–152.50 nm, indicating that freeze-drying was appropriate, regardless of the size reduction technique. The liposomes, regardless of size reduction technique and freeze drying had slightly negative zeta potential values or were almost neutral in surface charge. The entrapment efficiency of BDP in homogenized liposomes was found to increase following freeze-drying, hence the drug entrapment efficiency values in rehydrated liposomes were 64.9%, 57%, 69.5% and 64.5% for 5%, 10%, 15% and 20% weight gains respectively. In this study, we have reported a reliable production method of nano-liposomes based on widely applicable industrial technologies such as fluid-bed coating, high pressure homogenization and freeze-drying. Moreover, sucrose played a dual role as a carrier in the proliposome formulations and as a cryoprotectant during freeze-drying
    corecore