75 research outputs found

    A PRELIMINARY INVESTIGATION OF HTR1A GENE EXPRESSION LEVELS IN AUTISM SPECTRUM DISORDERS

    Get PDF
    Objective: This study was conducted to explore the expression levels of HTR1A gene in a sample of Egyptian autistic children. Methods: Thirty autistic patients (18 boys, 12 girls) and 20 controls were enrolled in the study. From each child, we isolated RNA samples from whole blood. Quantitative Real-Time PCR (qRT-PCR) was used to measure the gene expressions of HTR1A and normalized to the house keeping gene, beta-actin. Results: The HTR1A gene expression of healthy controls and ASD subjects were varied significantly (p =0.0062). As compared to control healthy subjects, the HTR1A expressions were greatly reduced in samples of ASD. Conclusion: HTR1A gene expression level is a candidate gene for further studies to explore its potential roles in ASD related pathways

    Fully symbolic-based technique for solving complex state-space control systems

    Get PDF
    Despite the superiority of symbolic approaches over the purely numerical approaches in many aspects, it does not receive the proper attention due to its significant complexity, high resources requirement and long drawn time which even grows significantly with the increase of model dimensions. However, its merits deserve every attempt to overcome the difficulties being faced. In this paper, a fully generic symbolic-based technique is proposed to deal with complex state space control problems. In this technique, depending on the model dimension if exceeds a predefined limit, the state space is solved using the partitioned matrices theory and block wise inversion formula. Experimental results demonstrate that the proposed technique overcomes all the previously mentioned barriers and gives the same results when compared to numerical methods (Simulink). Moreover, it can be used to gain useful information about the system itself, provides an indication of which parameters are more important and reveals the sensitivity of system model to single parameter variations

    Neuroprotective effect of ranolazine improves behavioral discrepancies in a rat model of scopolamine-induced dementia

    Get PDF
    BackgroundRanolazine (Rn), an antianginal agent, acts in the central nervous system and has been used as a potential treatment agent for pain and epileptic disorders. Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative diseases and the leading factor in dementia in the elderly.AimWe examined the impact of Rn on scopolamine (Sco)-induced dementia in rats.MethodsThirty-two albino male rats were divided into four groups: control, Rn, Sco, and Rn + Sco.ResultsA significant decrease in the escape latency in the Morris water maze test after pre-treatment with Rn explained better learning and memory in rats. Additionally, Rn significantly upregulated the activities of the antioxidant enzymes in the treated group compared to the Sco group but substantially reduced acetylcholinesterase activity levels in the hippocampus. Moreover, Rn dramatically reduced interleukin-1 β (IL-1β) and IL-6 and upregulated the gene expression of brain-derived neurotrophic factor (BDNF). Furthermore, in the Sco group, the hippocampal tissue’s immunohistochemical reaction of Tau and glial factor activating protein (GFAP) was significantly increased in addition to the upregulation of the Caspase-3 gene expression, which was markedly improved by pre-treatment with Rn. The majority of pyramidal neurons had large vesicular nuclei with prominent nucleoli and appeared to be more or less normal, reflecting the all-beneficial effects of Rn when the hippocampal tissue was examined under a microscope.ConclusionOur findings indicated that Rn, through its antioxidative, anti-inflammatory, and anti-apoptotic effects, as well as the control of the expression of GFAP, BDNF, and Tau proteins, has a novel neuroprotective impact against scopolamine-induced dementia in rats

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • …
    corecore