26 research outputs found

    Whole Saliva has a Dual Role on the Adherence of Candida albicans to Polymethylmetacrylate

    Get PDF
    Adhesion of Candida albicans to acrylic of dental prostheses or to salivary macromolecules adsorbed on their surface is believed to be a critical event in the development of denture stomatitis. In previous studies our group has shown that adhesion of C. albicans germ tubes to polystyrene is decreased by saliva whereas C. albicans yeast cells adhesion to the same material is enhanced. The results presented in this study confirm this dual role played by whole saliva, since it decreased the adhesion of germ tubes but increased the adhesion of yeast cells to polymethylmetacrylate (PMMA). These effects mediated by whole saliva do not seem to be related to an inhibition of the germination of C. albicans, since similar levels of filamentation were observed in presence and absence of saliva. These results may give new insights into the conflicting role of saliva in the adhesion of C. albicans to acrylic resins of dental prostheses

    Effect of various dietary regimens on oral challenge with Mycobacterium avium subsp. paratuberculosis in a rabbit model

    Get PDF
    Rabbits are susceptible to infection by Mycobacterium avium subspecies paratuberculosis (MAP) in both wildlife and experimental conditions. Under the hypotheses that nutrient balance might influence the establishment of infection, we designed an experiment where MAP intestinal colonization was assessed under three dietary regimens: high fiber, high protein, and regular diet in New Zealand white rabbits submitted to oral challenge with MAP.Lowest weight gain (F=5.17, p=0.024), higher tissue culture positivity rates (X2=7.43, p=0.024) and especially extended MAP-compatible lesions (F=5.78, p=0.017) were detected in the regular diet.Taken altogether, results indicate that paratuberculosis infection was achieved affecting mostly regular diet animals and showing that dietary changes may modulate the course of the infection

    Thermal Mass Effect on the Solution Cooling Rate and on HIPped Astroloy Component Properties

    Get PDF
    Astroloy is a Ni-based superalloy with high-volume fraction of γ′, which gives high temperature properties but reduces its forgeability. Therefore, powder metallurgy manufacturing processes such as Near Net Shape HIPping are the most suitable manufacturing technology for Astroloy. However, NNSHIP has its own drawbacks, such as the formation of prior particle boundaries (PPBs), which usually tend to decrease material mechanical properties. The detrimental effect of PPBs can be reduced by optimizing the entire HIP processing route. Conventional HIP cycles have very low cooling rates, especially in big components from industry, and thus a series of post-heat treatments must be applied in order to achieve desirable microstructures and improve the mechanical properties. Standard heat treatments for Astroloy are long and tedious with several steps of solutioning, stabilization and precipitation. In this work, two main studies have been performed. First, the effect of the cooling rate after the solutioning treatment, which is driven by the materials’ thermal mass, on the Astroloy microstructure and mechanical properties was studied. Experimental analyses and simulation techniques have been used in the present work and it has been found that higher cooling rates after solutioning increase the density of tertiary γ′ precipitates by 85%, and their size decreases by 22%, which leads to an increase in hardness from 356 to 372 HB30. This hardness difference tends to reduce after subsequent standard heat treatment (HT) that homogenizes the microstructure. The second study shows the effect of different heat treatments on the microstructure and hardness of samples with two different thermal masses (can and cube). More than double the density of γ′ precipitates was found in small cubes in comparison with cans with a higher thermal mass. Therefore, the hardness in cubes is between 4 and 20 HB 30 higher than in large cans, depending on the applied HT

    Enumeration of Mycobacterium avium subsp. paratuberculosis by quantitative real-time PCR, culture on solid media and optical densitometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different approaches are used for determining the number of <it>Mycobacterium avium </it>subsp. <it>paratuberculosis </it>(MAP) cells in a suspension. The majority of them are based upon culture (determination of CFU) or visual/instrumental direct counting of MAP cells. In this study, we have compared the culture method with a previously published F57 based quantitative real-time PCR (F57qPCR) method, to determine their relative abilities to count the number of three different MAP isolates in suspensions with the same optical densities (OD). McFarland turbidity standards were also compared with F57qPCR and culture, due to its frequent inclusion and use in MAP studies.</p> <p>Findings</p> <p>The numbers of MAP in two-fold serial dilutions of isolates with respective OD measurements were determined by F57qPCR and culture. It was found that culture provided lower MAP CFU counts by approximately two log<sub>10</sub>, compared to F57qPCR. The McFarland standards (as defined for <it>E. coli</it>) showed an almost perfect fit with the enumeration of MAP performed by F57qPCR.</p> <p>Conclusions</p> <p>It is recommended to use culture and/or qPCR estimations of MAP numbers in experiments where all subsequent counts are performed using the same method. It is certainly not recommended the use of culture as the standard for qPCR experiments and <it>vice versa</it>.</p

    Evaluación de la respuesta in vitro de los neutrófilos caprinos frente a la infección con Mycobacterium avium subsp. paratuberculosis

    No full text
    Trabajo presentado a la: XXXIII Reunión de la Sociedad Española de Anatomía Patológica Veterinaria (SEAPV). Lugo. O31. 15-17 junio

    Antifungal and antitumor activities of a monoclonal antibody directed against a stress mannoprotein of Candida albicans

    No full text
    Immunization of mice with a stress mannoprotein of >200 kDa from the cell wall of Candida albicans led to the production of monoclonal antibody (Mab) C7. The immunogen is a major target of secretory IgA and its expression is regulated by different environmental conditions including temperature, pH, glucose concentration and ammonium sulphate in the culture medium. Mab C7 reacted with a peptide epitope present in the >200 kDa antigen as well as in a number of antigens from the blastoconidium and germ tube cell wall, including enolase. In addition to its reactivity with C. albicans, Mab C7 also reacted with antigens present in C. krusei, C, tropicalis, C. glabrata, C. dubliniensis and C. lusitaniae, as well as in Cryptococcus neoformans, Scedosporium prolificans and Aspergillus fumigatus. Mab C7 exhibited four important biological activities, namely inhibition of adhesion of C. albicans to a variety of surfaces, inhibition of germination of C. albicans, direct candidacidal activity and direct tumoricidal activity. In tumor cells, Mab C7 reacted with nucleoporin Nup88, a reactivity that can be utilized for diagnostic and prognostic purposes

    Influence of homologous and heterologous vaccines and their components on the host immune response and protection against experimental caprine paratuberculosis

    No full text
    Trabajo presentado al: 4th ESVP, ECVP and ESTP Cutting Edge Pathology Congress. p. 144. 15-17 septiembre. Virtual meeting.This work has been funded by the research projects AGL 2015-66540-C2-1-R, RTI2018-099496-B-I00, LE259P18 and RTA 2017-00089-00-00Peer reviewe
    corecore