94 research outputs found

    Novel Computational and Analytic Techniques for Nonlinear Systems Applied to Structural and Celestial Mechanics

    Get PDF
    In this Dissertation, computational and analytic methods are presented to address nonlinear systems with applications in structural and celestial mechanics. Scalar Homotopy Methods (SHM) are first introduced for the solution of general systems of nonlinear algebraic equations. The methods are applied to the solution of postbuckling and limit load problems of solids and structures as exemplified by simple plane elastic frames, considering only geometrical nonlinearities. In many problems, instead of simply adopting a root solving method, it is useful to study the particular problem in more detail in order to establish an especially efficient and robust method. Such a problem arises in satellite geodesy coordinate transformation where a new highly efficient solution, providing global accuracy with a non-iterative sequence of calculations, is developed. Simulation results are presented to compare the solution accuracy and algorithm performance for applications spanning the LEOtoGEO range of missions. Analytic methods are introduced to address problems in structural mechanics and astrodynamics. Analytic transfer functions are developed to address the frequency domain control problem of flexible rotating aerospace structures. The transfer functions are used to design a Lyapunov stable controller that drives the spacecraft to a target position while suppressing vibrations in the flexible appendages. In astrodynamics, a Taylor series based analytic continuation technique is developed to address the classical two-body problem. A key algorithmic innovation for the trajectory propagation is that the classical averaged approximation strategy is replaced with a rigorous series based solution for exactly computing the acceleration derivatives. Evidence is provided to demonstrate that high precision solutions are easily obtained with the analytic continuation approach. For general nonlinear initial value problems (IVPs), the method of Radial Basis Functions time domain collocation (RBF-Coll ) is used to address strongly nonlinear dynamical systems and to analyze short as well as long-term responses. The algorithm is compared against, the second order central difference, the classical Runge-Kutta, the adaptive Runge-Kutta-Fehlberg, the Newmark-β, the Hilber-Hughes-Taylor and the modified Chebyshev-Picard iteration methods in terms of accuracy and computational cost for three types of problems; (1) the unforced highly nonlinear Duffing oscillator, (2) the Duffing oscillator with impact loading and (3) a nonlinear three degrees of freedom (3-DOF) dynamical system. The RBF-Collmethod is further extended for time domain inverse problems addressing fixed time optimal control problems and Lamberts orbital transfer problem. It is shown that this method is very simple, efficient and very accurate in obtaining the solutions. The proposed algorithm is advantageous and has promising applications in solving general nonlinear dynamical systems, optimal control problems and high accuracy orbit propagation in celestial mechanics

    Dynamics of a 9-DOF Heterogeneous Robotic Platform for Spacecraft Motion Emulation

    Get PDF
    Increasing access to space has driven demand for low cost, portable, and highly specialized robotic platforms to accurately simulate multi-dimensional space missions. Presented is an effective heterogeneous robotic system that emulates orbital motion from given control algorithms. This robotic platform is composed of a three degrees of freedom (3-DOF) holonomic omni wheel ground vehicle carrying a 6-DOF robotic manipulator, which results in a 9-DOF coupled moving manipulator system. The dynamical models are derived and feedback linearization is studied to control the system. The integrated controls and hardware result in an a sophisticated in-lab system that will be scalable from orbital motion to execution of complex tasks, including spaceflight rendezvous and proximity operations, servicing missions, and surface exploration and sampling

    Blended learning for accredited life support courses - A systematic review.

    Get PDF
    Aim To evaluate the effectiveness on educational and resource outcomes of blended compared to non-blended learning approaches for participants undertaking accredited life support courses. Methods This review was conducted in adherence with PRISMA standards. We searched EMBASE.com (including all journals listed in Medline), CINAHL and Cochrane from 1 January 2000 to 6 August 2021. Randomised and non-randomised studies were eligible for inclusion. Study screening, data extraction, risk of bias assessment (using RoB2 and ROBINS-I tools), and certainty of evidence evaluation (using GRADE) were all independently performed in duplicate. The systematic review was registered with PROSPERO (CRD42022274392). Results From 2,420 studies, we included data from 23 studies covering fourteen basic life support (BLS) with 2,745 participants, eight advanced cardiac life support (ALS) with 33,579 participants, and one Advanced Trauma Life Support (ATLS) with 92 participants. Blended learning is at least as effective as non-blended learning for participant satisfaction, knowledge, skills, and attitudes. There is potential for cost reduction and eventual net profit in using blended learning despite high set up costs. The certainty of evidence was very low due to a high risk of bias and inconsistency. Heterogeneity across studies precluded any meta-analysis. Conclusion Blended learning is at least as effective as non-blended learning for accredited BLS, ALS, and ATLS courses. Blended learning is associated with significant long term cost savings and thus provides a more efficient method of teaching. Further research is needed to investigate specific delivery methods and the effect of blended learning on other accredited life support courses

    Antidepressant prescribing practices for the treatment of children and adolescents.

    Get PDF
    OBJECTIVE: This study evaluates pediatric antidepressant prescribing practices of Nebraska clinicians. METHODS: Surveys were sent in July, 2005, to 1,521 prescribing clinicians throughout Nebraska to assess pediatric antidepressant use along with any practice changes following the U.S. Food and Drug Administration (FDA) black box warning issued in October, 2004. RESULTS: Over half (n = 866) of the clinicians responded to the survey, of which 96.8% reported awareness of the FDA black box warning. Of the respondents, 76.9% (n = 666) were prescribing antidepressants to children and/or adolescents. Clinicians reported decreased prescribing frequency for both children (15.5%) and adolescents (36.6%), with 36% having increased referrals to specialists. While 31.9% reported seeing patients more frequently upon initiation of antidepressants, only 7.5% reported weekly visits for the first month of treatment, as recommended by the FDA. Over one fifth (21.9%) reported a caregiver or patient had refused antidepressant medication treatment due to the FDA\u27s warning. CONCLUSION: Clinicians in Nebraska report changes in clinical practice due to the issuance of the FDA black box warning, with a decrease in prescribing antidepressants to pediatric patients and an increase in referrals to specialists. Although awareness of the FDA\u27s warning was evident among clinicians and patients, adherence to recommended guidelines was low

    Molecular identification of adenoviruses associated with respiratory infection in Egypt from 2003 to 2010.

    Get PDF
    BACKGROUND: Human adenoviruses of species B, C, and E (HAdV-B, -C, -E) are frequent causative agents of acute respiratory infections worldwide. As part of a surveillance program aimed at identifying the etiology of influenza-like illness (ILI) in Egypt, we characterized 105 adenovirus isolates from clinical samples collected between 2003 and 2010. METHODS: Identification of the isolates as HAdV was accomplished by an immunofluorescence assay (IFA) and confirmed by a set of species and type specific polymerase chain reactions (PCR). RESULTS: Of the 105 isolates, 42% were identified as belonging to HAdV-B, 60% as HAdV-C, and 1% as HAdV-E. We identified a total of six co-infections by PCR, of which five were HAdV-B/HAdV-C co-infections, and one was a co-infection of two HAdV-C types: HAdV-5/HAdV-6. Molecular typing by PCR enabled the identification of eight genotypes of human adenoviruses; HAdV-3 (n = 22), HAdV-7 (n = 14), HAdV-11 (n = 8), HAdV-1 (n = 22), HAdV-2 (20), HAdV-5 (n = 15), HAdV-6 (n = 3) and HAdV-4 (n = 1). The most abundant species in the characterized collection of isolates was HAdV-C, which is concordant with existing data for worldwide epidemiology of HAdV respiratory infections. CONCLUSIONS: We identified three species, HAdV-B, -C and -E, among patients with ILI over the course of 7 years in Egypt, with at least eight diverse types circulating

    Molecular Characterization of Streptococcus Pneumoniae Causing Disease Among Children in Nigeria During the Introduction of PCV10 (GSK)

    Get PDF
    Streptococcus pneumoniae (pneumococcus) is a leading vaccine-preventable cause of childhood invasive disease. Nigeria has the second highest pneumococcal disease burden globally, with an estimated ~49 000 child deaths caused by pneumococcal infections each year. Ten-valent pneumococcal conjugate vaccine (GSK; PCV10) was introduced in December 2014 in a phased approach. However, few studies have characterized the disease-causing pneumococci from Nigeria. This study assessed the prevalence of serotypes, antibiotic susceptibility and genomic lineages using whole genome sequencing and identified lineages that could potentially escape PCV10 (GSK). We also investigated the potential differences in pneumococcal lineage features between children with and without sickle cell disease. A collection of 192 disease-causing pneumococcal isolates was obtained from Kano (n=189) and Abuja (n=3) states, Nigeria, between 1 January 2014 and 31 May 2018. The majority (99 %, 190/192) of specimens were recovered from children aged 5 years or under. Among them, 37 children had confirmed or traits of sickle cell disease. Our findings identified 25 serotypes expressed by 43 Global Pneumococcal Sequence Clusters (GPSCs) and 85 sequence types (STs). The most common serotypes were 14 (18 %, n=35), 6B (16 %, n=31), 1 (9 %, n=17), 5 (9 %, n=17) and 6A (9 %, n=17); all except serotype 6A are included in PCV10 (GSK). PCV10 (SII; PNEUMOSIL) and PCV13 formulations include serotypes 6A and 19A which would increase the overall coverage from 67 % by PCV10 (GSK) to 78 and 82 %, respectively. The pneumococcal lineages were a mix of globally spreading and unique local lineages. Following the use of PCV10 (GSK), GPSC5 expressing serotype 6A, GPSC10 (19A), GPSC26 (12F and 46) and GPSC627 (9L) are non-vaccine type lineages that could persist and potentially expand under vaccine-selective pressure. Approximately half (52 %, 99/192) of the pneumococcal isolates were resistant to the first-line antibiotic penicillin and 44 % (85/192) were multidrug-resistant. Erythromycin resistance was very low (2 %, 3/192). There was no significant difference in clinical manifestation, serotype prevalence or antibiotic resistance between children with and without traits of or confirmed sickle cell disease. In summary, our findings show that a high percentage of the pneumococcal disease were caused by the serotypes that are covered by currently available vaccines. Given the low prevalence of resistance, macrolide antibiotics, such as erythromycin, should be considered as an option to treat pneumococcal disease in Nigeria. However, appropriate use of macrolide antibiotics should be vigilantly monitored to prevent the potential increase in macrolide resistance

    Perspectives of the Apiaceae Hepatoprotective Effects - A Review

    Get PDF
    The liver has the crucial role in the regulation of various physiological processes and in the excretion of endogenous waste metabolites and xenobiotics. Liver structure impairment can be caused by various factors including microorganisms, autoimmune diseases, chemicals, alcohol and drugs. The plant kingdom is full of liver protective chemicals such as phenols, coumarins, lignans, essential oils, monoterpenes, carotenoids, glycosides, flavonoids, organic acids, lipids, alkaloids and xanthenes. Apiaceae plants are usually used as a vegetable or as a spice, but their other functional properties are also very important. This review highlights the significance of caraway, dill, cumin, aniseed, fennel, coriander, celery, lovage, angelica, parsley and carrot, which are popular vegetables and spices, but possess hepatoprotective potential. These plants can be used for medicinal applications to patients who suffer from liver damage

    Molecular Characterization of Streptococcus pneumoniae Causing Disease Among Children in Nigeria During the Introduction of PCV10 (GSK)

    Get PDF
    Streptococcus pneumoniae (pneumococcus) is a leading vaccine-preventable cause of childhood invasive disease. Nigeria has the second highest pneumococcal disease burden globally, with an estimated ~49 000 child deaths caused by pneumococcal infections each year. Ten-valent pneumococcal conjugate vaccine (GSK; PCV10) was introduced in December 2014 in a phased approach. However, few studies have characterized the disease-causing pneumococci from Nigeria. This study assessed the prevalence of serotypes, antibiotic susceptibility and genomic lineages using whole genome sequencing and identified lineages that could potentially escape PCV10 (GSK). We also investigated the potential differences in pneumococcal lineage features between children with and without sickle cell disease. A collection of 192 disease-causing pneumococcal isolates was obtained from Kano (n=189) and Abuja (n=3) states, Nigeria, between 1 January 2014 and 31 May 2018. The majority (99 %, 190/192) of specimens were recovered from children aged 5 years or under. Among them, 37 children had confirmed or traits of sickle cell disease. Our findings identified 25 serotypes expressed by 43 Global Pneumococcal Sequence Clusters (GPSCs) and 85 sequence types (STs). The most common serotypes were 14 (18 %, n=35), 6B (16 %, n=31), 1 (9 %, n=17), 5 (9 %, n=17) and 6A (9 %, n=17); all except serotype 6A are included in PCV10 (GSK). PCV10 (SII; PNEUMOSIL) and PCV13 formulations include serotypes 6A and 19A which would increase the overall coverage from 67 % by PCV10 (GSK) to 78 and 82 %, respectively. The pneumococcal lineages were a mix of globally spreading and unique local lineages. Following the use of PCV10 (GSK), GPSC5 expressing serotype 6A, GPSC10 (19A), GPSC26 (12F and 46) and GPSC627 (9L) are non-vaccine type lineages that could persist and potentially expand under vaccine-selective pressure. Approximately half (52 %, 99/192) of the pneumococcal isolates were resistant to the first-line antibiotic penicillin and 44 % (85/192) were multidrug-resistant. Erythromycin resistance was very low (2 %, 3/192). There was no significant difference in clinical manifestation, serotype prevalence or antibiotic resistance between children with and without traits of or confirmed sickle cell disease. In summary, our findings show that a high percentage of the pneumococcal disease were caused by the serotypes that are covered by currently available vaccines. Given the low prevalence of resistance, macrolide antibiotics, such as erythromycin, should be considered as an option to treat pneumococcal disease in Nigeria. However, appropriate use of macrolide antibiotics should be vigilantly monitored to prevent the potential increase in macrolide resistance
    corecore