649 research outputs found
Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model
The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed
Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene
We have analyzed P-element-transformed lines carrying hsp26/lacZ transgenes with various deletions and substitutions within the Drosophila melanogaster hsp26 promoter region in order to identify the sequences required for the formation of the DNase I hypersensitive sites (DH sites). DH sites are generally found associated with promoters and enhancer elements of active and inducible eukaryotic genes, and are thought to be nucleosome-free regions of DNA that interact with regulatory proteins and the transcriptional machinery. There are two major DH sites located within the promoter region of the hsp26 gene, centered at -50 and at -350 (relative to the hsp26 transcription start site). The sequences from -135 to -85, which contain (CT)n.(GA)n repeats, contribute significantly to the formation of the DH sites in the hsp26 promoter region. Deletion or substitution of this (CT)n region drastically reduces the accessibility of the DNA at these sites to DNase I. This reduction in accessibility was quantified by measuring the susceptibility of the DNA within nuclei to cleavage at a restriction site within the DH site. In addition to the (CT)n region and the promoter at -85 to +11 (region P), one of two other regions must be present for effective creation of the DH sites: sequences between -351 and -135 (region A), or sequences between +11 and +632 (region D). Disruption of the wild-type chromatin structure, as assayed by the loss of accessibility to the DH sites, is correlated with a decrease in inducible transcriptional activity, even when the TATA box and heat shock regulatory elements are present in their normal positions
Photometric analysis of a space shuttle water venting
Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment
Ground state of the helium-atom-graphite-surface system
We report the first results of a thermodynamic analysis of data for 3He adsorbed on Grafoil. The 3He-graphite binding energy is in excellent agreement with a prediction made on the basis of 4He-graphite atomic scattering data
Evaluating consumptive and nonconsumptive predator effects on prey density using field time‐series data
Determining the degree to which predation affects prey abundance in natural communities constitutes a key goal of ecological research. Predators can affect prey through both consumptive effects (CEs) and nonconsumptive effects (NCEs), although the contributions of each mechanism to the density of prey populations remain largely hypothetical in most systems. Common statistical methods applied to time‐series data cannot elucidate the mechanisms responsible for hypothesized predator effects on prey density (e.g., differentiate CEs from NCEs), nor can they provide parameters for predictive models. State‐space models (SSMs) applied to time‐series data offer a way to meet these goals. Here, we employ SSMs to assess effects of an invasive predatory zooplankter, Bythotrephes longimanus, on an important prey species, Daphnia mendotae, in Lake Michigan. We fit mechanistic models in an SSM framework to seasonal time series (1994–2012) using a recently developed, maximum‐likelihood–based optimization method, iterated filtering, which can overcome challenges in ecological data (e.g., nonlinearities, measurement error, and irregular sampling intervals). Our results indicate that B. longimanus strongly influences D. mendotae dynamics, with mean annual peak densities of B. longimanus observed in Lake Michigan estimated to cause a 61% reduction in D. mendotae population growth rate and a 59% reduction in peak biomass density. Further, the observed B. longimanus effect is most consistent with an NCE via reduced birth rates. The SSM approach also provided estimates for key biological parameters (e.g., demographic rates) and the contribution of dynamic stochasticity and measurement error. Our study therefore provides evidence derived directly from survey data that the invasive zooplankter B. longimanus is affecting zooplankton demographics and offer parameter estimates needed to inform predictive models that explore the effect of B. longimanus under different scenarios, such as climate change.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148243/1/ecy2583-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148243/2/ecy2583_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148243/3/ecy2583.pd
Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal patterns of productivity in Lake Michigan: A biophysical modeling study
We applied a three‐dimensional biophysical model to Lake Michigan for the years 2000, 2005, and 2010 to consider the mechanisms controlling spatial and temporal patterns of phytoplankton abundance (chlorophyll a) and lake‐wide productivity. Model skill was assessed by comparison to satellite‐derived Chl a and field‐measured water quality variables. We evaluated model sensitivity to scenarios of varying mussel filter feeding intensity, tributary phosphorus loads, and warm vs. cool winter‐spring climate scenarios. During the winter‐spring phytoplankton bloom, spatial patterns of Chl a were controlled by variables that influenced surface mixed layer depth: deep mixing reduced net phytoplankton growth through light limitation and by exposing the full water column to mussel filter feeding. Onset of summer and winter stratification promoted higher surface Chl a initially by increasing mean light exposure and by separating the euphotic zone from mussels. During the summer stratified period, areas of relatively high Chl a were associated with coastal plumes influenced by tributary‐derived nutrients and coastal upwelling‐downwelling. While mussels influenced spatial and temporal distribution of Chl a, lake‐wide, annual mean primary production was more sensitive to phosphorus and warm/cool meteorology scenarios than to mussel filter feeding scenarios. Although Chl a and primary production declined over the quagga mussel invasion, our results suggest that increased nutrient loads would increase lake‐wide productivity even in the presence of mussels; however, altered spatial and temporal patterns of productivity caused by mussel filter feeding would likely persist.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139984/1/lno10595-sup-0001-suppinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139984/2/lno10595.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139984/3/lno10595_am.pd
Stability of stationary states in the cubic nonlinear Schroedinger equation: applications to the Bose-Einstein condensate
The stability properties and perturbation-induced dynamics of the full set of
stationary states of the nonlinear Schroedinger equation are investigated
numerically in two physical contexts: periodic solutions on a ring and
confinement by a harmonic potential. Our comprehensive studies emphasize
physical interpretations useful to experimentalists. Perturbation by stochastic
white noise, phase engineering, and higher order nonlinearity are considered.
We treat both attractive and repulsive nonlinearity and illustrate the
soliton-train nature of the stationary states.Comment: 9 pages, 11 figure
INVERSE SCATTERING TRANSFORM ANALYSIS OF STOKES-ANTI-STOKES STIMULATED RAMAN SCATTERING
Zakharov-Shabat--Ablowitz-Kaup-Newel-Segur representation for
Stokes-anti-Stokes stimulated Raman scattering is proposed. Periodical waves,
solitons and self-similarity solutions are derived. Transient and bright
threshold solitons are discussed.Comment: 16 pages, LaTeX, no figure
- …