36 research outputs found

    EventNeRF: Neural Radiance Fields from a Single Colour Event Camera

    Full text link
    Asynchronously operating event cameras find many applications due to their high dynamic range, no motion blur, low latency and low data bandwidth. The field has seen remarkable progress during the last few years, and existing event-based 3D reconstruction approaches recover sparse point clouds of the scene. However, such sparsity is a limiting factor in many cases, especially in computer vision and graphics, that has not been addressed satisfactorily so far. Accordingly, this paper proposes the first approach for 3D-consistent, dense and photorealistic novel view synthesis using just a single colour event stream as input. At the core of our method is a neural radiance field trained entirely in a self-supervised manner from events while preserving the original resolution of the colour event channels. Next, our ray sampling strategy is tailored to events and allows for data-efficient training. At test, our method produces results in the RGB space at unprecedented quality. We evaluate our method qualitatively and quantitatively on several challenging synthetic and real scenes and show that it produces significantly denser and more visually appealing renderings than the existing methods. We also demonstrate robustness in challenging scenarios with fast motion and under low lighting conditions. We will release our dataset and our source code to facilitate the research field, see https://4dqv.mpi-inf.mpg.de/EventNeRF/.Comment: 18 pages, 18 figures, 3 table

    Gradient-based 2D-to-3D Conversion for Soccer Videos

    Get PDF
    A wide spread adoption of 3D videos and technologies is hindered by the lack of high-quality 3D content. One promising solution to address this problem is to use automated 2D-to-3D conversion. However, current conversion methods, while general, produce low-quality results with artifacts that are not acceptable to many viewers. We address this problem by showing how to construct a high-quality, domain-specific conversion method for soccer videos. We propose a novel, data-driven method that generates stereoscopic frames by transferring depth information from similar frames in a database of 3D stereoscopic videos. Creating a database of 3D stereoscopic videos with accurate depth is, however, very difficult. One of the key findings in this paper is showing that computer generated content in current sports computer games can be used to generate high-quality 3D video reference database for 2D-to-3D conversion methods. Once we retrieve similar 3D video frames, our technique transfers depth gradients to the target frame while respecting object boundaries. It then computes depth maps from the gradients, and generates the output stereoscopic video. We implement our method and validate it by conducting user-studies that evaluate depth perception and visual comfort of the converted 3D videos. We show that our method produces high-quality 3D videos that are almost indistinguishable from videos shot by stereo cameras. In addition, our method significantly outperforms the current state-of-the-art method. For example, up to 20% improvement in the perceived depth is achieved by our method, which translates to improving the mean opinion score from Good to Excellent.Qatar Computing Research Institute-CSAIL PartnershipNational Science Foundation (U.S.) (Grant IIS-1111415

    GVP: Generative Volumetric Primitives

    Full text link
    Advances in 3D-aware generative models have pushed the boundary of image synthesis with explicit camera control. To achieve high-resolution image synthesis, several attempts have been made to design efficient generators, such as hybrid architectures with both 3D and 2D components. However, such a design compromises multiview consistency, and the design of a pure 3D generator with high resolution is still an open problem. In this work, we present Generative Volumetric Primitives (GVP), the first pure 3D generative model that can sample and render 512-resolution images in real-time. GVP jointly models a number of volumetric primitives and their spatial information, both of which can be efficiently generated via a 2D convolutional network. The mixture of these primitives naturally captures the sparsity and correspondence in the 3D volume. The training of such a generator with a high degree of freedom is made possible through a knowledge distillation technique. Experiments on several datasets demonstrate superior efficiency and 3D consistency of GVP over the state-of-the-art.Comment: https://vcai.mpi-inf.mpg.de/projects/GVP/index.htm

    FML: Face Model Learning from Videos

    Full text link
    Monocular image-based 3D reconstruction of faces is a long-standing problem in computer vision. Since image data is a 2D projection of a 3D face, the resulting depth ambiguity makes the problem ill-posed. Most existing methods rely on data-driven priors that are built from limited 3D face scans. In contrast, we propose multi-frame video-based self-supervised training of a deep network that (i) learns a face identity model both in shape and appearance while (ii) jointly learning to reconstruct 3D faces. Our face model is learned using only corpora of in-the-wild video clips collected from the Internet. This virtually endless source of training data enables learning of a highly general 3D face model. In order to achieve this, we propose a novel multi-frame consistency loss that ensures consistent shape and appearance across multiple frames of a subject's face, thus minimizing depth ambiguity. At test time we can use an arbitrary number of frames, so that we can perform both monocular as well as multi-frame reconstruction.Comment: CVPR 2019 (Oral). Video: https://www.youtube.com/watch?v=SG2BwxCw0lQ, Project Page: https://gvv.mpi-inf.mpg.de/projects/FML19

    An Implicit Parametric Morphable Dental Model

    Get PDF
    3D Morphable models of the human body capture variations among subjects and are useful in reconstruction and editing applications. Current dental models use an explicit mesh scene representation and model only the teeth, ignoring the gum. In this work, we present the first parametric 3D morphable dental model for both teeth and gum. Our model uses an implicit scene representation and is learned from rigidly aligned scans. It is based on a component-wise representation for each tooth and the gum, together with a learnable latent code for each of such components. It also learns a template shape thus enabling several applications such as segmentation, interpolation, and tooth replacement. Our reconstruction quality is on par with the most advanced global implicit representations while enabling novel applications. Project page: https://vcai.mpi-inf.mpg.de/projects/DMM

    VideoForensicsHQ: Detecting High-quality Manipulated Face Videos

    Get PDF
    There are concerns that new approaches to the synthesis of high quality face videos may be misused to manipulate videos with malicious intent. The research community therefore developed methods for the detection of modified footage and assembled benchmark datasets for this task. In this paper, we examine how the performance of forgery detectors depends on the presence of artefacts that the human eye can see. We introduce a new benchmark dataset for face video forgery detection, of unprecedented quality. It allows us to demonstrate that existing detection techniques have difficulties detecting fakes that reliably fool the human eye. We thus introduce a new family of detectors that examine combinations of spatial and temporal features and outperform existing approaches both in terms of detection accuracy and generalization.Comment: ICME 2021 camera-read

    LiveHand: Real-time and Photorealistic Neural Hand Rendering

    Full text link
    The human hand is the main medium through which we interact with our surroundings. Hence, its digitization is of uttermost importance, with direct applications in VR/AR, gaming, and media production amongst other areas. While there are several works for modeling the geometry and articulations of hands, little attention has been dedicated to capturing photo-realistic appearance. In addition, for applications in extended reality and gaming, real-time rendering is critical. In this work, we present the first neural-implicit approach to photo-realistically render hands in real-time. This is a challenging problem as hands are textured and undergo strong articulations with various pose-dependent effects. However, we show that this can be achieved through our carefully designed method. This includes training on a low-resolution rendering of a neural radiance field, together with a 3D-consistent super-resolution module and mesh-guided space canonicalization and sampling. In addition, we show the novel application of a perceptual loss on the image space is critical for achieving photorealism. We show rendering results for several identities, and demonstrate that our method captures pose- and view-dependent appearance effects. We also show a live demo of our method where we photo-realistically render the human hand in real-time for the first time in literature. We ablate all our design choices and show that our design optimizes for both photorealism and rendering speed. Our code will be released to encourage further research in this area.Comment: 11 pages, 8 figure
    corecore