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Fig. 1. We present an SDF-based morphable model for the human teeth and gums. Our model is compositional, i.e. the full geometry is a combination of a
number of smaller components, that each model one semantically meaningful component: Each tooth and also the gums are controlled by separate latent
codes. This allows our model to not just reconstruct geometry, but to also compute a semantic labelling in addition. Furthermore, it enables editing of specific
components, e.g. individual teeth (see dashed red). Our model can also be used to smoothly interpolate between different teeth configurations, possibly
serving as a visual aid in the communication between orthodontists and their patients.

3D Morphable models of the human body capture variations among subjects
and are useful in reconstruction and editing applications. Current dental
models use an explicit mesh scene representation and model only the teeth,
ignoring the gum. In this work, we present the first parametric 3Dmorphable
dental model for both teeth and gum. Our model uses an implicit scene
representation and is learned from rigidly aligned scans. It is based on a
component-wise representation for each tooth and the gum, together with a
learnable latent code for each of such components. It also learns a template
shape thus enabling several applications such as segmentation, interpolation
and tooth replacement. Our reconstruction quality is on par with the most
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advanced global implicit representations while enabling novel applications.
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1 INTRODUCTION
The availability of morphable human face models has enabled vari-
ous applications such as virtual face avatars for telecommunication
[Lombardi et al. 2018; Wang et al. 2021], photorealistic animation
in movies and media production [Flawless 2022; Kim et al. 2019;
Synthesia 2022], single-photo editing [Tewari et al. 2020], and oth-
ers [Hu et al. 2017; Thies et al. 2019; Zollhöfer et al. 2018b]. So far,
however, most of such methods omit the modelling of the mouth
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interior, in particular teeth and gum. It is not only in the afore-
mentioned applications that these parts of the human face are of
importance, but also in medical research, for instance in orthodontic
treatment. Capturing the geometry of the dental region (teeth and
gum) is the basis for many interesting use cases, such as planning of
the treatment or visualizing expected results for the patient. In this
context, the availability of a morphable model with some control
over original geometric components, e.g. over single tooth, could
for example allow animating a transition from the status quo in a
patient towards a desired treatment result.
Processing the human teeth poses multiple challenges: For one,

human teeth can be shifted, rotated and generally misaligned in
many ways, and some of them may even be missing altogether.
Furthermore, the topological variety of teeth and their very uni-
form texture make it very hard to reliable detect, or even define
any stable features on them. While there have been attempts to
create morphable models for the human teeth only [Wu et al. 2016]
(without gum), they are based on explicit representations such as
meshes with a manually defined template shape. Learning such
models requires accurate non-rigid registration of 3D scans and
manual labeling of the teeth during reconstruction. Until now, there
is no parametric morphable model for the human teeth that also
includes the gums.
In this work, we present the first parametric morphable dental

model for the geometry of the human teeth and gums.While the vast
majority of human body models use explicit representations such
as meshes [Egger et al. 2020; Loper et al. 2015; Romero et al. 2017],
recently, there has been strong interest in using implicit represen-
tations [Alldieck et al. 2021; Corona et al. 2022; Palafox et al. 2021;
Yenamandra et al. 2021; Zheng et al. 2022]. Motivated by this, we use,
for the first time, an implicit representation for modeling teeth and
gums: We adapt the implicit representation of DeepSDF [Park et al.
2019] where an object’s geometry is represented by the decision
boundary of a classifier that is supposed to tell whether points lie
inside or outside of the examined object. To further identify dense
correspondences, we learn a template shape and its deformations
with the help of Hyper Networks [Sitzmann et al. 2020]. We use a
compositional DeepSDF representation, i.e. each tooth or the gum
is assigned a separate DeepSDF network with a learnable latent
code. In addition to improving reconstruction accuracy over most of
the original global implicit representations [Park et al. 2019; Zheng
et al. 2021], the compositional representation allows various editing
applications such as tooth replacement and interpolation (see Fig. 1).
Our model can be learned from merely aligned 3D scans. The final
overall model is a combination of the outputs of all the component
models, weighted by segmentation indicators that are also predicted
by the model.
In summary, we make the following contributions:

• We present the first implicit morphable model for the geom-
etry of the human teeth and gum. We use a compositional
implicit representation, with learnable latent codes for each
region.

• Our model learns a template shape, which automatically es-
tablishes correspondences that help predict geometry seg-
mentation during reconstruction.

• We introduce novel segmentation and teeth centroid losses
that are crucial for training the model.

• Our technique produces accurate reconstructions that are on
par with the state of the art, in addition to enabling novel
applications such as tooth replacement, interpolation and
segmentation.

As of yet, there is no publicly accessible model of the human teeth
and gums, making ours the first such model when we release it.

2 RELATED WORK
In this section we start by discussing implicit representations used
formodeling the scene geometry. Here, we examine both global [Chen
and Zhang 2019; Mescheder et al. 2019; Park et al. 2019] and lo-
cal [Deng et al. 2021; Zheng et al. 2021] representations, and the
advantages the latter brings to literature. We then discuss recent
methods for modelling the human body using implicit representa-
tions. Finally, we discuss methods for teeth processing with empha-
size on teeth reconstruction and modeling.

2.1 Scene geometry modeling
Modeling scene geometry is a fundamental task in both computer
vision and computer graphics. Previous methods use explicit repre-
sentations such as meshes [Thies et al. 2016], voxels [Nießner et al.
2013] or points clouds [Keller et al. 2013]. While such explicit rep-
resentations have been successful in many applications [Zollhöfer
et al. 2018a], they suffer from a number of limitations: Voxels are
memory-intensive, meshes struggle to handle detailed structures
and point clouds are sparse and lose a significant portion of the
geometry. Thus, in the past few years several efforts weremade to ex-
plore so-called implicit geometrical representation [Chen and Zhang
2019; Mescheder et al. 2019; Park et al. 2019]. Unlike the earlier ap-
proaches, implicit representations encode the geometry indirectly,
for instance as the decision boundary of a classifier that decides
whether a point lies inside or outside the examined object. Among
the most popular implicit representations are DeepSDF [Park et al.
2019] and Occupancy Networks [Mescheder et al. 2019]. DeepSDF
uses a signed distance function to measure how far a point is from
the surface of the examined object, while Occupancy Networks pre-
dict the probability of a point lying inside the object. Both methods
demonstrate interesting capabilities such as interpolating between
latent codes learned either by an auto-decoder [Park et al. 2019] or
an auto-encoder [Mescheder et al. 2019] architecture.
Follow-up works addressed limitations of implicit representa-

tions. One main limitation is the lack of correspondences, which
limit editing and model learning capabilities. To this end, some
works proposed to learn a template that is shared by all the training
samples, which may be similar to the mean shape for the training
samples. For instance, “Deep Implicit Templates”[Zheng et al. 2021],
or DIT for short, uses a network that learns the deformation to
the template shape. “Deformed Implicit Field” [Deng et al. 2021]
, or DIF, proposes a similar idea, but, inspired by [Sitzmann et al.
2019], they use so-called Hyper-Nets, that predict the weights of
their deformation networks.
There are several implicit representations that decompose the

geometry into a number of localized components [Chabra et al. 2020;
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Chen et al. 2021; Genova et al. 2020; Peng et al. 2020; Tretschk et al.
2020; Wu et al. 2020] as opposed to the single global representation
used in the earlier works [Chen and Zhang 2019; Mescheder et al.
2019; Park et al. 2019]. The motivation here is that while implicit rep-
resentations are powerful, their global formulation could limit their
generalization capabilities and reconstruction accuracy. Genova et
al. [Genova et al. 2020] use localized deep implicit representations
and assign latent codes to each local region. The method estimates a
template shape as well as geometrical details through a local shape
encoder. However, it automatically decomposes thewatertight shape
into a pre-defined number of components, the definition of which
cannot be controlled and would lead to problems and mis-shaped
geometry when teeth are missing. Chabra et al. [Chabra et al. 2020]
uses a localized SDF representation with local latent codes defined
in a voxel grid. Both methods show finer geometric details than
global formulations and better generalization capabilities. Another
potentially useful application of localized representations is the abil-
ity to perform novel applications. For instance Yin et al. [Yin et al.
2020] proposed a method that combines different parts of the same
object together. This is done by learning the connections/joints of
the various parts. Joints are learned using the implicit representation
of Chen et al. [Chen and Zhang 2019]. They are learned in a way to
agree with the remaining components while being smooth and topo-
logically valid. The solution is trained with segmented components
extracted from ShapeNet. PQ-Net [Wu et al. 2020] represents and
generates 3D shapes in a sequential part assembly manner. However,
since this method is not able to automatically segment the input
data, it requires segmentation annotations at test time for the recon-
struction task. Their geometric components are rigidly assembled
to compose a model, while we believe that dental models require
smooth blending of components into one reconstruction.

2.2 Implicit-based Modeling
Recently there has been increasing interest in building models of
the various parts of the human body using implicit representations.
This includes models for the human head [Yenamandra et al. 2021;
Zheng et al. 2022], hands [Corona et al. 2022] and body [Alldieck
et al. 2021; Deng et al. 2020; Palafox et al. 2021]. The work of Yena-
mandra et al. [Yenamandra et al. 2021] was the first in this regard.
They presented the first 3D morphable model of the human head,
including hair. The model learns latent codes for identity, albedo,
expression and hairstyle. The model, named i3DMM, is based on a
SDF-based architecture learned from 3D scans of various subjects
with different hairstyles and performing different expressions. The
method learns a template shape and a deformation to this shape.
The template shape establishes correspondences and hence, unlike
early 3DMM explicit face models [Egger et al. 2020], it does not need
complicated non-rigid alignment of the scans, but merely rigidly
aligned ones. The method shows novel interpolation applications
in the latent spaces of all components e.g. identity, expressions and
hairstyle. ImFace [Zheng et al. 2022] is a concurrent work to the
one we present here. The aim is to improve the reconstruction ac-
curacy of i3DMM [Yenamandra et al. 2021] using a localized SDF
representation. To this regards, the entire face is decomposed into 5

regions with separate networks for expression and identity learn-
ing. A meta-learning approach is used, where hyper-nets learn the
weights of the expression and identity networks. Results show more
accurate reconstructions over i3DMM [Yenamandra et al. 2021]. An
important difference between ImFace and our work is that since
we aim at providing semantic control over each tooth individually,
we assign one dedicated latent code to each geometric component,
i.e. to each tooth and to the gums, whereas ImFace’s latent codes
cannot be partitioned into distinct regions of the geometry. Also,
our method is different from NASA [Deng et al. 2020]: For a fixed
number of joints, NASA encodes geometry as pose-conditioned
occupancy. This is ill-suited for dental geometry, as single teeth
might be missing, and annotating individual teeth poses and skin-
ning weights for the dental scans in the training set would be very
difficult.

2.3 Human Teeth Processing
There are several methods for processing the human teeth, including
methods for teeth reconstruction [Abdelrehim et al. 2014; Farag
et al. 2013; Wirtz et al. 2021; Wu et al. 2016; Zheng et al. 2011],
restoration and completion [Mostafa et al. 2014; Ping et al. 2021],
orthodontic treatment [Yang et al. 2020], segmentation [Cui et al.
2021; Zhang et al. 2021], pose estimation [Beeler and Bradley 2014;
Murugesan et al. 2018; Yang et al. 2019] and others [Velinov et al.
2018; Wei et al. 2020]. The closest to our work are methods for teeth
reconstruction and restoration [Abdelrehim et al. 2014; Mostafa et al.
2014; Ping et al. 2021; Wirtz et al. 2021; Wu et al. 2016]. The vast
majority of these methods use explicit representations, with the
exception of Ping et al. [Ping et al. 2021]. This work, however, does
not propose a morphable model, but rather takes teeth crowns as
input and completes themwith gum. Abderlrehim et al. [Abdelrehim
et al. 2014] reconstructs individual teeth from a single image by
using shape-from-shading with shape priors. Here, shape priors
are learned using PCA on height maps. Mostafa et al. [Mostafa
et al. 2014] proposes a method for tooth restoration based on a
single captured image. Restoration is achieved by aligning to a
model derived from ensemble of oral cavity shapes and textures.
Wirtz et al. [Wirtz et al. 2021] reconstructs teeth only, without gums,
from 5 images of different viewpoints. They propose a model-based
method that deforms a mean teeth shape to fit the input images.
The optimum fitting is estimated by minimizing a silhouette loss
between the 2D projections of the fitted 3D model and the observed
2D images.
Wu et al. [Wu et al. 2016] utilizes a teeth model learned from

high quality dental scans and fit it to multiple images shot from
either a multiview camera setup or from a handheld moving cam-
era. The teeth model follows a mesh representation and does not
include the gum. To build the model, the 3D scans are aligned with
respect to a manually defined template. Alignment is done through
user-intervention, followed by a combination of rigid and non-rigid
registration. An average shape model is estimated and PCA is used
to estimate local shape variations. The final model accounts for the
global deformations of the entire tooth row and the variations of
each tooth individually.
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We present the first implicit-based model for the human teeth
and gum. It is morphable by design, producing intermediate shapes
by interpolating between latent codes. Furthermore, it learns a ref-
erence shape that allows the computation of correspondences. This
produces segmentation masks of the teeth as a by-product, as well
as allowing interesting editing applications such as teeth replace-
ment. In comparison to Wu et al. [Wu et al. 2016], our model does
not need any labeling of the teeth for reconstruction, except for a
binary vector indicating the presence/absence of individual teeth.
Our model is trained on scans that were aligned only rigidly, in
contrast to Wu et al., who require sophisticated non-rigid alignment
coupled with user-intervention. It also jointly models the gum with
the teeth, unlike Wu et al., who only model teeth. We believe our
model is a useful contribution to recent efforts of building implicit
models of the full human body as discussed in Sec. 2.2. We will
release our model for research purposes, thus making it the only
publicly available morphable teeth model including gums.

3 OVERVIEW

Fig. 2. Examples from our dataset of ground truth teeth geometries. Teeth
identities have been annotated manually. We visualize them by different
colours.

Our aim is to build a morphable model for the geometry of the
human teeth and gum, with the ability to control each component
individually. To this end, we present a compositional SDF represen-
tation where separate models are used to represent each tooth and
the gum. For a standard dental scan (maxilla or mandible), we typi-
cally have one gum and up to 14 teeth (excluding 2 wisdom teeth),
and thus we build our model assuming𝑚 = 15 components in total
(Fig. 2). We learn 1 dedicated latent code for each of these 15 com-
ponents. This allows editing applications such as tooth replacement
and morphing.

Our proposed network consists of𝑚 sub-modules that represent
the different components of the dental scan (Fig. 3a). Conditioned
on a latent code and given a point in 3D space as input, each sub-
module 𝑖 predicts an SDF value 𝑠𝑖 +Δ𝑠𝑖 and an indicator 𝛿𝑖 . The latter
provides an estimate of the probability that the input point belongs
to that part of the geometry that the sub-module is responsible for.
Based on the 𝛿𝑖 values for all components, we compute a set of
blending weights 𝑤𝑖 to linearly combine the accompanying SDF
values to one final value.

For each sub-module, we use a variant of DIF [Deng et al. 2021]
(as shown in Fig. 3b): The input spatial point will first be warped
by a Deform-Net. This network is generated by a Hyper-Net that is
conditioned on a latent code. It maps each input point to a learned

canonical reference space, in which a template shape is embedded
by a Ref-Net (see Fig. 3b). Deform-Net also predicts the SDF compen-
sation Δ𝑠𝑖 to refine geometric details. Hence the component-wise
SDF is computed as 𝑠𝑖 + Δ𝑠𝑖 , where 𝑠𝑖 is the SDF value predicted by
the Ref-Net.

Our method is trained on a dataset of dental geometries, manually
annotated with semantic labels that segment the surface into the
individual tooth types and the gums (see Fig. 2). Even though these
models have been acquired by different methods (e.g. by digitizing
the traditional teeth impression of a patient, or more directly by
an intra-oral scanning method) we will refer to them mostly as
“dental scans”, to avoid confusion between the various meanings of
the word “model”. Each scan is available as a high-resolution mesh,
in particular allowing us to obtain normal vectors for supervision.
More details are given in Sec. 5.1

4 METHOD
To enable control over each geometric component individually, we
decompose the overall latent space of the entire model into sub-
spaces that correspond to teeth and gums respectively. Inspired by
DeepSDF [Park et al. 2019], we model the entirety of the teeth scan
geometry as a function 𝑓 that is conditioned on a set {z𝑖 }𝑖=1,...,𝑚
of gum and teeth latent codes (where 𝑚 = 15 is the number of
geometric components in our implementation), and maps arbitrary
spatial locations p to the signed distance 𝑠 between p and the surface:

𝑓 (p, z1, . . . , z𝑚) = 𝑠 (1)
where the set {p | 𝑓 (p, z1, . . . , z𝑚) = 0} constitutes the surface of

the model. To learn sub-spaces of the geometry of individual com-
ponents, we decompose the overall function 𝑓 into a set {𝑓𝑖 }𝑖=1,...,𝑚
of sub-functions:

𝑓 (p, z1, . . . , z𝑚) =
𝑚∑︁
𝑖=1

𝑤𝑖 · 𝑓𝑖 (p, z𝑖 ) =
𝑚∑︁
𝑖=1

𝑤𝑖 · (𝑠𝑖 + Δ𝑠𝑖 ) (2)

where𝑤𝑖 are blending weights 𝑠𝑖 are signed distance values for
component 𝑖 and Δ𝑠𝑖 are small-scale correction offsets for these
values. In the following sections, we discuss how to compute the
blending weights𝑤𝑖 and the function values 𝑓𝑖 (p, z𝑖 ) = 𝑠𝑖 +Δ𝑠𝑖 , and
we will define the objective function that we use for supervision.

4.1 Network structure
Each sub-function 𝑓𝑖 is implemented as a pair Φ𝑖 ,R𝑖 of neural net-
works (see Fig. 3b): The reference shape network R𝑖 (p′𝑖 ) = 𝑠𝑖 predicts
SDF values 𝑠𝑖 for the 𝑖-th reference shape, independent of the la-
tent code z𝑖 . It is queried at those points p′

𝑖
that are produced by

the deformation network Φ𝑖 (p, z𝑖 ) = (p′
𝑖
,Δ𝑠𝑖 , 𝛿𝑖 ). The deformation

network is supposed to warp the space in which the reference shape
is embedded, such that querying R𝑖 at the points p′𝑖 results in the
shape encoded by the z𝑖 .

In terms of output, there is a slight difference between the defor-
mation networks for the gums and those for the teeth: For the gums,
deformation is represented directly by the offset Δp of each query
point p so that p′ = p+Δp. For the teeth however, the points close to
them are always subject to almost the same rotation and translation,
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Component-wise SDF Submodule . . .

. . .

. . .

Component SDF
{fi}

∑ wi fi
SDF

f} m }m
. . .

Latent codes
{𝒛i}p

Segmentation indicator
{δi}

Component-wise SDF Submodule

(a) Overall workflow

p

Latent code
𝒛i

Hyper-Net
Ψi

Deform-Net Фi

SDF correction
∆si

Segmentation indicator
δi

Ref-Net ℛi

Template SDF
si

Deformed point
p'

⊕ Component SDF
fi = si+∆si

(b) Sub-network for one component

Fig. 3. The pipeline of our proposed method. We use a component-wise SDF representation where each tooth and the gum is represented by a separate
"Component Shape Model". These models learn a reference shape for each component (in the Ref-Net), that is queried at those points to which the input
points are warped by Deform-Net. Based on the component-wise SDF values and the segmentation indicators 𝛿 predicted for each component, we compute
the full geometry as a weighted sum (see top right).

because teeth have characteristic rigid shapes. Therefore, inspired
by [Park et al. 2021], we represent the transform for each point by
a screw axis (r; t) ∈ R6 and set p′ = 𝑒rp + t by Rodrigues’ formula
[Rodrigues 1816].
Note that the weights of Φ𝑖 are themselves the output of a so-

called Hyper-Net Ψ𝑖 (z𝑖 ), a mechanism introduced in recent works
[Deng et al. 2021; Sitzmann et al. 2020]. We differ from previous uses,
however, in thatΦ𝑖 not only predicts the deformed points p′

𝑖
and SDF

value correction deltas Δ𝑠𝑖 , but also an additional value 𝛿𝑖 ∈ [0, 1]
(see Fig. 3b), which serves as an indicator for teeth segmentation.
This indicator is used to estimate the blending weights from Eq. (2):

𝑤𝑖 :=
𝛿𝑖∑𝑚
𝑗=1 𝛿 𝑗

4.2 Objective Function
To train our component-wise implicit neural representations, we not
only build on loss terms from previous work [Deng et al. 2021; Sitz-
mann et al. 2020], but also contribute two new loss terms that help
decompose the geometry into semantically meaningful components,
namely our centroid loss and our segmentation loss.

Centroid loss. To guide and regularize the deformation field, most
face-related works use landmarks as their spatial constraints for

deformation [Yenamandra et al. 2021; Zheng et al. 2022]. However, it
is not easy to detect or even define landmarks on the teeth geometry.
We solve this problem by enforcing that deforming the centroid
point c𝑖 of tooth 𝑖 leads to a result c′

𝑖
, that should coincide with the

average centroid position c̄𝑖 of the training data for that tooth, which
we can precompute before training. We penalize the ℓ1 distance
between the predicted and the expected centroid:

Lcentroid
𝑖 = ∥c′𝑖 − c̄𝑖 ∥1 (3)

Segmentation loss. Our deformation network Φ𝑖 produces values
𝛿𝑖 that indicate a confidence with which a particular point belongs to
geometric component 𝑖 (where components can be any of the teeth,
or the gum). These values are very important to ensure the locality
of each deformation network: Only if component 𝑖 is sufficiently
close to a given point should 𝛿𝑖 take a significant value and thus
be able to contribute to the overall SDF value for that point. Any
SDF contributions coming from components that are not closest to
the point should be suppressed by multiplication with the blending
weights. Since the ground truth for segmentation is annotated on
the surface, we will only actively supervise those sample points
that reside on the surface with their ground truth labels. Since
points that lie on the surface of one component are usually off the
surfaces of the other components, this strategy, in combination
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with the SDF loss on the global level (see below) is sufficient for
making the 𝛿𝑖 values behave in the required way (see Tab. 3 for an
ablative evaluation). We force each Deform-Net to solve a binary
classification problem that can be formulated by point-wise binary
cross-entropy (BCE) loss:

Lseg
𝑖

=
∑︁
p∈S𝑖

BCE(𝛿𝑖 (p), ℓ𝑖 (p) == 𝑖) (4)

where S𝑖 is the tooth or gum surface and ℓ𝑖 is the ground truth
label for point p. The Deform-Net basically learns to classify surface
locations as either belonging to component 𝑖 , or not belonging to
component 𝑖 . Note that, in contrast to Mu et al. [Mu et al. 2021],
who use one shared network to represent all shapes and multi-class
segmentation labels, each of our submodules learns the deformation
field and label of only one corresponding geometric component.

Deformation smoothness loss. The deformation fields for all com-
ponents should be rather smooth, because we expect the template
shape learned by R𝑖 to be close to the mean shape of component
𝑖 . We thus constrain the deformation field Φ𝑖 to be smooth, as in
[Deng et al. 2021]:

Lsmooth
𝑖 =

∑︁
p∈Ω

∇ (
p′𝑖 (p) − p

)
2 (5)

where∇(p′
𝑖
(p)−p) is the Jacobian of deformation offset with respect

to the coordinates of p and Ω is the 3D spatial domain.

SDF loss. We do not use ground-truth SDF values for supervision
Instead we use a loss term from previous work [Sitzmann et al. 2020]
that merely ensures that SDF values predicted by our model behave
in a way that is consistent with the surface normals of the geometry
and that satisfies the conditions that are generally expected from
a signed distance field. We use this loss term twice, namely on the
component level and also on the global level:

Component-level SDF loss. For each component we minimize:

LSDF
𝑖 =

∑︁
p∈S𝑖

|𝑓𝑖 (p) | + (1 − ⟨∇𝑓𝑖 (p), 𝑛⟩)

+
∑︁
𝑝∈Ω

��∥∇𝑓𝑖 (p)∥2 − 1
�� + ∑︁

p∈Ω\S𝑖

𝜓 (𝑓𝑖 (p))
(6)

where𝜓 (𝑥) = exp(−𝛼 · |𝑥 |) with 𝛼 ≫ 1. The first sum in this term
encourages points on the surface S𝑖 to be mapped to SDF values
close to 0, while the spatial gradient of the SDF value at those points
should be directed parallel to the ground truth normal vectors 𝑛. The
last sum in the loss term forces non-surface points to be mapped
to SDF values that are different from zero. The sum term in the
middle forces the gradient of the signed distance field to be 1 almost
everywhere.

Global-level SDF+Normal loss. We use the same loss term also
on the global level, to make sure that the result of blending all the
geometric components together has the same desirable properties

as each component individually:

LSDF =
∑︁
p∈S

|𝑓 (p) | + (1 − ⟨∇𝑓 (p), 𝑛⟩)

+
∑︁
𝑝∈Ω

��∥∇𝑓 (p)∥2 − 1
�� + ∑︁

p∈Ω\S
𝜓 (𝑓 (p))

(7)

Normal consistency loss. The SDF loss (Eqs. (6) and (7)) makes sure
that our signed distance fields are consistent with the ground truth
normal vectors for each instance. However, it is possible to satisfy
the SDF loss while deforming points from different instances to
different parts of the template shape. We need to discourage this, in
order to establish consistent correspondences between the surface
points of a particular instance and the surface points of the template
shape learned by R. As pointed out before [Deng et al. 2021], this
can be achieved by forcing the normal directions at the points of the
template surface to coincide with the normals at the corresponding
points in each instance:

Lcorres
𝑖 =

∑︁
p∈S𝑖

(
1 −

〈
∇R𝑖

(
p′

)
, 𝑛

〉)
(8)

where ∇R𝑖 is the spatial gradient of the reference net, and 𝑛 is the
ground truth normal of the query point p on the original surface S𝑖 .

SDF correction regularization loss. To make sure that SDF correc-
tion values Δ𝑠𝑖 remain reasonably small and serve only to encode
fine geometric details (as opposed to encoding the entire shape in
general), we add the regularizer [Deng et al. 2021]

Lcorrection
𝑖 =

∑︁
p∈Ω

|Δ𝑠𝑖 (p) | (9)

Latent code regularization loss. The latent codes are regularized
by minimizing the term [Park et al. 2019]:

Llatent
𝑖 = ∥z𝑖 ∥2

2 (10)

In summary, we optimize the following objective:

L =
1
|I |

∑︁
𝑖∈I

(_1Lcentroid
𝑖 + _2Lseg

𝑖
+ _3Lcorres

𝑖 + _4Lsmooth
𝑖

+ _5Llatent
𝑖 + _6Lcorrection

𝑖 + _7LSDF
𝑖 ) + _8LSDF

(11)
Here, I is the set of all component identities (i.e. all teeth and
gum components) and the {_𝑘 } are hyperparameters that control
the weight of each term. Note that because dental patients may be
missing one or more teeth, we dynamically set the component-level
weights (i.e. _1 to _7) to zero in such cases, i.e. we do not supervise
the submodules for components that are not present in a particular
training scan.

4.3 Data Preprocessing and Sampling
In order to provide the training data for our morphable model, we
first collect a set of dental scans (see Fig. 2). Each of the scanned
models was manually annotated, to segment them into gums and
individual teeth, with each tooth being labelled by its identification
number in the FDI World Dental Federation notation system (ISO-
3950) [ISO-3950 2016].
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Since the scans have been acquired using a variety of different
devices, they are not aligned in a common coordinate system. We
thus select one of the scans and normalize it to occupy the volume
[−1, 1]3. Then we align all scans with this template, by aligning
the centroids of corresponding teeth in a generalized Procrustes
analysis (GPA) [Gower 1975] that estimates the optimal scaling,
rotation and translation for each instance, minimizing the sum of
square distances. Note that the centroids of teeth are approximately
on a plane which makes the GPA unstable. We handle this problem
by checking the determinant of the rotation matrix and making sure
that reflections are converted to rotations when necessary [Arun
et al. 1987]. Based on the aligned scans, we compute the average
centroid for each tooth position.

In order to supervise our model, we need to sample the training
data, which, for computational efficiency reasons, we do once before
the start of training. We follow the sampling strategy proposed in
DIF-Net [Deng et al. 2021] with slight modifications to ensure that
the distribution of the samples is adequate for capturing geometric
details. Specifically, we require most sample points to be on the
surface of the geometry and wemake sure that each tooth is sampled
equally often, even though teeth differ in surface area. For each
dental scan, we sample 25,000 points on each tooth and 100,000 on
the gum. All the surface sample points come with their labels and
surface normals. We also sample 500,000 free space points uniformly
from [−1, 1]3.

5 RESULTS
In this section, we evaluate our approach with regards to its re-
construction quality, its suitability for editing applications and the
importance of its design choices. We also compare it to a number of
methods for implicit scene representations [Deng et al. 2021; Park
et al. 2019; Zheng et al. 2021]. While each of these methods shares
some of the features of our method, none of them decomposes the
geometry into semantically delineated components in the way we
do, and thus cannot provide separate control over the semantic
components of the geometry (e.g. over individual teeth). We refer
the reader to the supplemental material for video results.

5.1 Implementation details
As described in Sec. 3, our model is trained on a dataset of dental
scans. This dataset contains 1077 maxilla geometries, about half of
which are malaligned.We split them randomly into 1027 for training,
and 50 for testing. By flipping left and right and interchanging labels,
we augmented the training set to 2054 geometries. Fig. 2 shows some
examples from the dataset.
For each geometric component (i.e. for each tooth type and for

the gum), we use a latent code of length 10. We weigh our loss terms
by _1 = 1, _2 = 102, _3 = 102, _4 = 50, _5 = 106, _6 = 103, _7 = 1,
_8 = 0.1. Our model is trained on 2 NVIDIA Quadro RTX 8000 GPUs
for 120 epochs, which takes about 36 hours. In each iteration we
sample 16384 points from 8 randomly selected ground truth scans.
For all modules, the learning rate is 1 · 10−4, which we halve every
30 epochs.

Fig. 4. Reconstruction with teeth labelling. Left column: raw dental scan
data; Right column: reconstruction results with teeth labelled by ourmethod.

Fig. 5. The template shapes learned by our submodules, combined into one
overall geometry.

5.2 Reconstruction & semantic labelling
To reconstruct a given dental scan, we keep the weights of our
trained model fixed and solve, similar to previous work [Park et al.
2019], the following optimization problem:

arg min
{z𝑖 }

(
LSDF + _latent

∑︁
𝑖∈I

Llatent
𝑖

)
(12)

where I is the set of teeth indices that are present in the scan.
Note that, for a user of our method, merely providing a boolean
vector that indicates the presence or absence of individual teeth is
significantly easier than manually segmenting the individual teeth
in the raw scan data.

In the first and second column of Fig. 6 we compare some ground
truth dental scans to our reconstruction results. We observe that in
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Fig. 6. Comparison of reconstruction results with DIF [Deng et al. 2021], DeepSDF [Park et al. 2019], and DIT [Zheng et al. 2021]. Our method clearly
outperforms DIT and DeepSDF. Furthermore, the error heat map shows that our method reconstructs the teeth region more accurately than DIF. Note that
our method is the only one that offers independent control over each tooth and the gums, thus enabling interesting editing applications (see Sec. 5.3).
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general our reconstructions quite faithful, even in cases where teeth
are severely misaligned, such as in the second row. In particular,
our reconstructions exhibit clearly visible gum lines.
Fig. 5 shows that our method also learns a meaningful template

shape. It is via this template shape, that our method is not only able
to reconstruct a given dental scan, but also to label it semantically,
identifying each tooth in it (Fig. 4). The construction of our dataset
still required this labelling to be done manually, but our method
now provides a means of automating this task.

5.3 Editing applications
Themajor strength of ourmethod is the fact that it decomposes teeth
geometry into a number of semantically meaningful components
that can be controlled individually. This allows us, for example,
to edit a particular reconstruction result by replacing teeth that
are mis-shaped or posed unaesthetically, by some more desirable
counterparts (for example from a catalogue of aesthetically more
pleasing teeth). Fig. 8 give an impression of this kind of editing
application. Note that we only edited the incisor teeth, while all the
other teeth remain unchanged. Fig. 1 gives another example (see
dashed red).
Especially in an orthodontic context, for example as part of a

telehealth application, such editing could be used to visualize differ-
ent treatment outcomes to a patient. Since orthodontic treatments
such as correcting misaligned teeth can be a lengthy and continu-
ous process, there may also be some merit in visualizing them as
one continuous animation, which we illustrate in Fig. 7 and in our
supplemental video. Note that in those results we merely linearly
interpolate latent codes from one teeth configuration to another.
In an actual orthodontic use case, the animation would probably
need to contain additional “keyframes”, based on orthodontic expert
knowledge.

5.4 Comparison to related works
We compare our model to a number of implicit-based reconstruction
methods, including the original DeepSDF [Park et al. 2019] and two
more recent evolutions of it that both learn a template shape, DIT
[Zheng et al. 2021] and DIF [Deng et al. 2021]. The latter is closest to
our method, because it also uses Hyper-Nets to predict the weights
of the deformation network. None of these methods, however use a
component-wise representation and thus unlike our method they
are unable to provide component-wise editing as we have shown in
Sec. 5.3.
In Fig. 6 we compare our reconstruction results to those of the

other methods. We observe that our reconstruction quality is clearly
superior to that of DeepSDF or DIT. The comparison to DIF requires
closer inspection: While at first sight DIF and our method seem
to be on par, we consider the clearer gum line in our results as an
advantage, given that this is also a clearly visible feature in the
ground truth geometry. In the error maps we observe that while
both methods struggle in similar areas of the gums, our method
shows fewer and smaller erroneous regions on the teeth (see rows 1
and 3), especially when teeth are misaligned.

In Tab. 1 we compare themethods numerically:We extract meshes
from our reconstructions by marching cubes. After sampling a point

cloud from such a mesh and from the ground truth mesh, we can
compute symmetric Chamfer distance and an F-score based on
that, as was done in previous work [Yenamandra et al. 2021] (after
applying a threshold of 0.01 to the Chamfer distances). In all of
our results, the width of the mean bounding box around the teeth
geometry is approximately 2.

Tab. 1 confirms that our method and DIF are very close in recon-
struction quality and superior to the other methods. This is a very
satisfying finding, given that our method is fulfilling the additional
requirements of providing semantic labelling and allowing inde-
pendent control over individual geometric components. DIF does
not have these capabilities, but our method achieves them without
compromising reconstruction quality at all.

Table 1. Quantitative comparison with related works. The reconstruction
accuracy is evaluated by the symmetric Chamfer distance (lower is better)
and F-score (higher is better). Our overall reconstruction accuracy is on par
with DIF. However, DIF does not enable the novel applications our method
is capable of (Sec. 5.3).

Metrics Chamfer distance ↓ F-score ↑
DeepSDF 0.01497 42.132

DIT 0.01353 47.668
DIF 0.0058 88.125
Ours 0.00552 88.029

We also provide a comparison based on a publicly available 3D
dental model dataset [Ben-Hamadou et al. 2022], which includes
595 dental models with ground truth labelling (after filtering out 2
duplicates and 3 cases with wisdom teeth). We split them into 545 for
training (1090 after flipping data augmentation) and 50 for testing.
The numerical results are shown in Tab. 2, confirming that our
method achieves similar performance as DIF for the reconstruction
task. All the methods yield better numerical results in Tab. 2 than
Tab. 1 because the teeth in this dataset are more regular in shapes.

Table 2. Quantitative comparison to related works on a publicly available
dataset [Ben-Hamadou et al. 2022]. The accuracy and F-scores are evaluated
in the same way as Tab. 1. Similarly, our overall reconstruction accuracy is
on par with DIF.

Metrics Chamfer distance ↓ F-score ↑
DeepSDF 0.01196 53.761

DIT 0.01263 50.317
DIF 0.00514 92.622
Ours 0.00463 92.182

5.5 Ablation Study
To evaluate our design choices, we have conducted an ablation
study, comparing our full method to variants that lack our centroid
loss or our segmentation loss (see Sec. 4.2), as well as variants that
omit the Deform-Net or train its weights directly, without obtaining
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Fig. 7. In each row we interpolate between the reconstruction of a pre-treatment scan (first column) and the reconstruction of a post-treatment scan (last
column). The arrows show the direction of interpolation. We can render plausible visualizations of orthodontic treatment plans in this way, which is best
illustrated by our supplemental video results.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Teeth replacement demonstration. (a) and (d) show two malaligned
incisors from bottom and side view respectively (see dashed red). (b) and (e)
show the result of replacing these two incisor teeth by some counterparts
that are aligned better, while keeping all the other teeth unchanged. (c) and
(f) encode the difference between before and after the edit. Note that the
original model has no canine. Thus, we selected to process this example to
show that we can reconstruct a model with originally missing teeth.

them via a Hyper-Net. Tab. 3 shows that removing any of these
design choices strongly deteriorates reconstruction accuracy. Our
centroid and segmentation losses, which are absolutely vital for
segmenting the geometry into separate semantic components also
seem to improve reconstruction quality, as numbers consistently
get worse when any of them is omitted. The importance of these
two losses, that we introduce in this work, is further highlighted by
Figs. 9 and 10: Fig. 10 clearly shows that semantic labelling becomes
very inaccurate when our segmentation loss is omitted. Note that
the semantic labelling is not only a visualization but also an indicator

of the locality of each individual component. When the semantic
labelling is not accurate, the SDF contribution from each component
is also not accurate. Fig. 9 is consistent with Tab. 3: While all the
design choices including the deformation field and the use of Hyper-
Net have clear impact on the final result, omitting either centroid
or segmentation loss can still significantly increase the error, for
example as observed in the molar on the right in the second row
(see dashed red).

Table 3. Ablating the various design choices of our method. Our full method
achieves the best results.

Metrics Chamfer distance ↓ F-score ↑
Our full method 0.005522 88.029
w/o centroid loss 0.006644 83.306
w/o Segmentation loss 0.005985 86.706
w/o Deform-Net 0.01377 51.818
w/o Hyper-Net 0.01841 35.225

6 LIMITATIONS & FUTURE WORK
Even though the availability of a morphable teeth model with some
control over individual teeth is a very useful contribution to the
state of the art in this area, our model still has some limitations. For
example, at reconstruction time, we assume that the user provides
a binary vector indicating the presence/absence of teeth in their
respective positions. Without this information, missing teeth might
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Fig. 9. Similar to Fig. 6, we visualize reconstruction results of our method and its ablated variants. As is confirmed by Tab. 3, our full method achieves the best
results. Especially omitting our centroid loss or our segmentation loss can lead to severe artifacts (see dashed red).

(a) Our full method (b) w/o Segmentation loss

Fig. 10. Disabling our segmentation loss (b) clearly throws off the semantic
labelling that our method (a) provides.

(a) (b) (c)

Fig. 11. If a boolean vector indicating the presence/absence of individual
teeth is provided, the ground truth geometry (a) can be faithfully recon-
structed (b) by our method. If one gives an incorrect boolean vector, e.g.
specifying that the right incisor (green in (b)) is missing, the resulting re-
construction (c) can have strong artifacts.

lead to flawed results, as shown in Fig. 11 While providing the
binary vector is not too difficult for a user (such as a doctor or
even a patient), it would be more satisfying to be able to infer it
automatically. To make the model usable in a broader range of use
cases, it would have to include texture, which we have not addressed
in this work. In addition, we completely omit the modelling of the

tongue, which would be one major step on the way from a dental
model to a full-fledged intra-oral model. We believe the modelling
of the tongue to be a very difficult problem, because it is not even
clear what data can be acquired for tongues. A limitation much
more easily overcome would be the extension of our model to the
lower jaw, which does not require any changes to the method itself,
but just training it on an additional dataset.

7 CONCLUSION
We have presented the first compositional, implicit neural repre-
sentation for the modelling of teeth+gum geometry. Not only does
our representation achieve state of the art quality in reconstruction
(Sec. 5.2), but also it decomposes the geometry into a number of
semantically meaningful components, i.e. into individual teeth and
the gum. The benefits of this decomposition are two-fold: First, it
makes our reconstruction approach provide a semantic labelling for
teeth geometry as an additional by-product (Fig. 4). Second, it shows
interesting editing applications, such as the replacement of indi-
vidual teeth by more aesthetically desirable alternatives (Sec. 5.3).
Together with the fact that our model can be used for rendering
smooth interpolations between different teeth states, it could be
a valuable tool for the communication between orthodontists and
their patients.

Beyond the concrete domain of teeth geometry, the contributions
of this work lie in the way we achieve the local-based decompo-
sition of complex geometry into smaller semantically meaningful
components, which we hope can be beneficial in other domains as
well. We will release the pre-trained model and the inference code,
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which will make it the first publicly available teeth model of its
kind.
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