25 research outputs found

    Migalastat HCl reduces globotriaosylsphingosine (Lyso- Gb3) in Fabry transgenic mice and in the plasma of Fabry patients

    Get PDF
    Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme a-galactosidase A (a-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of a-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb3 in mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3. Furthermore, baseline plasma lyso-Gb3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies. Oral administration of migalastat HCl (150 mg QOD) reduced urine GL-3 and plasma lyso-Gb3 in three subjects (range: 15% to 46% within 48 weeks of treatment). In contrast, three showed no reductions in either substrate. These results suggest that measurement of tissue and/or plasma lyso-Gb3 is feasible and may be warranted in future studies of migalastat HCl or other new potential therapies for FD

    A Pharmacogenetic Approach to Identify Mutant Forms of α-Galactosidase A that Respond to a Pharmacological Chaperone for Fabry Disease

    Get PDF
    Fabry disease is caused by mutations in the gene (GLA) that encodes α-galactosidase A (α-Gal A). The iminosugar AT1001 (GR181413A, migalastat hydrochloride, 1-deoxygalactonojirimycin) is a pharmacological chaperone that selectively binds and stabilizes α-Gal A, increasing total cellular levels and activity for some mutant forms (defined as “responsive”). In this study, we developed a cell-based assay in cultured HEK-293 cells to identify mutant forms of α-Gal A that are responsive to AT1001. Concentration-dependent increases in α-Gal A activity in response to AT1001 were shown for 49 (60%) of 81 mutant forms. The responses of α-Gal A mutant forms were generally consistent with the responses observed in male Fabry patient-derived lymphoblasts. Importantly, the HEK-293 cell responses of 19 α-Gal A mutant forms to a clinically achievable concentration of AT1001 (10 ”M) were generally consistent with observed increases in α-Gal A activity in peripheral blood mononuclear cells from male Fabry patients orally administered AT1001 during Phase 2 clinical studies. This indicates that the cell-based responses can identify mutant forms of α-Gal A that are likely to respond to AT1001 in vivo. Thus, the HEK-293 cell-based assay may be a useful aid in the identification of Fabry patients with AT1001-responsive mutant forms. Hum Mutat 32:1–13, 2011. © 2011 Wiley-Liss, Inc

    The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat

    Get PDF
    PURPOSE: Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene. Migalastat, a pharmacological chaperone, binds to specific mutant forms of α-galactosidase A to restore lysosomal activity. METHODS: A pharmacogenetic assay was used to identify the α-galactosidase A mutant forms amenable to migalastat. Six hundred Fabry disease-causing mutations were expressed in HEK-293 (HEK) cells; increases in α-galactosidase A activity were measured by a good laboratory practice (GLP)-validated assay (GLP HEK/Migalastat Amenability Assay). The predictive value of the assay was assessed based on pharmacodynamic responses to migalastat in phase II and III clinical studies. RESULTS: Comparison of the GLP HEK assay results in in vivo white blood cell α-galactosidase A responses to migalastat in male patients showed high sensitivity, specificity, and positive and negative predictive values (≄0.875). GLP HEK assay results were also predictive of decreases in kidney globotriaosylceramide in males and plasma globotriaosylsphingosine in males and females. The clinical study subset of amenable mutations (n = 51) was representative of all 268 amenable mutations identified by the GLP HEK assay. CONCLUSION: The GLP HEK assay is a clinically validated method of identifying male and female Fabry patients for treatment with migalastat

    Co-administration With the Pharmacological Chaperone AT1001 Increases Recombinant Human α-Galactosidase A Tissue Uptake and Improves Substrate Reduction in Fabry Mice

    Get PDF
    Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy (ERT), is the primary treatment for Fabry disease. However, rhα-Gal A has low physical stability, a short circulating half-life, and variable uptake into different disease-relevant tissues. We hypothesized that coadministration of the orally available, small molecule pharmacological chaperone AT1001 (GR181413A, 1-deoxygalactonojirimycin, migalastat hydrochloride) may improve the pharmacological properties of rhα-Gal A via binding and stabilization. AT1001 prevented rhα-Gal A denaturation and activity loss in vitro at neutral pH and 37 °C. Coincubation of Fabry fibroblasts with rhα-Gal A and AT1001 resulted in up to fourfold higher cellular α-Gal A and ~30% greater GL-3 reduction compared to rhα-Gal A alone. Furthermore, coadministration of AT1001 to rats increased the circulating half-life of rhα-Gal A by >2.5-fold, and in GLA knockout mice resulted in up to fivefold higher α-Gal A levels and fourfold greater GL-3 reduction than rhα-Gal A alone. Collectively, these data highlight the potentially beneficial effects of AT1001 on rhα-Gal A, thus warranting clinical investigation

    Long-term safety and efficacy of cipaglucosidase alfa plus miglustat in individuals living with Pompe disease:an open-label phase I/II study (ATB200-02)

    Get PDF
    Cipaglucosidase alfa plus miglustat (cipa + mig) is a novel, two-component therapy for Pompe disease. We report data from the Phase I/II ATB200-02 study for up to 48 months of treatment. Four adult cohorts, including one non-ambulatory ERT-experienced (n = 6) and three ambulatory cohorts, (two enzyme replacement therapy [ERT]-experienced cohorts [2–6 years (n = 11) and ≄ 7 years (n = 6)]), one ERT-naĂŻve cohort (n = 6), received 20 mg/kg intravenous-infused cipa plus 260 mg oral mig biweekly. Change from baseline (CFBL) for multiple efficacy endpoints at 12, 24, 36, and 48 months, pharmacodynamics, pharmacokinetics, safety, and immunogenicity data were assessed. Six-minute walking distance (% predicted) improved at 12, 24, 36, and 48 months: pooled ambulatory ERT-experienced cohorts, mean(± standard deviation [SD]) CFBL: 6.1(± 7.84), n = 16; 5.4(± 10.56), n = 13; 3.4(± 14.66), n = 12; 5.9(± 17.36), n = 9, respectively; ERT-naĂŻve cohort: 10.7(± 3.93), n = 6; 11.0(± 5.06), n = 6; 9.0(± 7.98), n = 5; 11.7(± 7.69), n = 4, respectively. Percent predicted forced vital capacity was generally stable in ERT-experienced cohorts, mean(± SD) CFBL − 1.2(± 5.95), n = 16; 1.0(± 7.96), n = 13; − 0.3(± 6.68), n = 10; 1.0(± 6.42), n = 6, respectively, and improved in the ERT-naĂŻve cohort: 3.2(± 8.42), n = 6; 4.7(± 5.09), n = 6; 6.2(± 3.35), n = 5; 8.3(± 4.50), n = 4, respectively. Over 48 months, CK and Hex4 biomarkers improved in ambulatory cohorts. Overall, cipa + mig was well tolerated with a safety profile like alglucosidase alfa. ATB200-02 results show the potential benefits of cipa + mig as a long-term treatment option for Pompe disease. Trial registration number: NCT02675465 January 26, 2016.</p

    Efficacy of the pharmacologic chaperone migalastat in a subset of male patients with the classic phenotype of Fabry disease and migalastat-amenable variants: data from the phase 3 randomized, multicenter, double-blind clinical trial and extension study

    Get PDF
    Purpose: Outcomes in patients with Fabry disease receiving migalastat during the phase 3 FACETS trial (NCT00925301) were evaluated by phenotype. Methods: Data were evaluated in two subgroups of patients with migalastat-amenable GLA variants: “classic phenotype” (n = 14; males with residual peripheral blood mononuclear cell αgalactosidase A <3% normal and multiorgan system involvement) and “other patients” (n = 36; males not meeting classic phenotype criteria and all females). Endpoints included estimated glomerular filtration rate (eGFR), left ventricular mass index (LVMi), Gastrointestinal Symptoms Rating Scale diarrhea subscale (GSRS-D), renal peritubular capillary (PTC) globotriaosylceramide (GL-3) inclusions, and plasma globotriaosylsphingosine (lyso-Gb3). Results: Baseline measures in the classic phenotype patients suggested a more severe phenotype. At month 24, mean (SD) annualized change in eGFRCKD-EPI with migalastat was −0.3 (3.76) mL/min/1.73 m2 in the classic phenotype subgroup; changes in LVMi, GSRS-D, and lyso-Gb3 were −16.7 (18.64) g/m2 , −0.9 (1.66), and −36.8 (35.78) nmol/L, respectively. At month 6, mean PTC GL-3 inclusions decreased with migalastat (−0.8) and increased with placebo (0.3); switching from placebo to migalastat, PTC inclusions decreased by −0.7. Numerically smaller changes in these endpoints were observed in the other patients. Conclusion: Migalastat provided clinical benefit to patients with Fabry disease and amenable variants, regardless of disease severity
    corecore