49 research outputs found

    A Tribological assessment of the porous coated anatomic total hip replacement

    Get PDF
    The tribological performance of internal joint prostheses is a fundamental influence on their longevity. The aim of this study is to characterise the tribological performance of the Porous Coated Anatomic total hip replacement by the analysis of 119 explanted prostheses. Investigations of the friction, wear, surface topography and wear debris were made and related to the joint's clinical performance. The friction of the joints at explant was similar to that of new prostheses. The median total wear volume (419mm(^3)) was found to agree with previous wear studies suggesting the existence of a threshold wear volume which promotes osteolysis. Clinical wear factor for the whole cohort matched that of alternative joint designs. The femoral head finish was shown to degrade but not in proportion to implant duration. The roughness of the UHMWPE liner was shown to fall but no relationship with any head roughness, or temporal, parameter could be distinguished. Simulator studies confirmed that the wear factor of a joint is likely to change over its lifespan. Wear models published previously describing the influence of femoral head roughness on wear could not predict the performance of explanted prostheses. An alternative relationship was observed indicating that head roughness is not as powerful a predictor of wear as previously held. A novel technique for the characterisation of the size distribution of ex vivo and in vitro wear debris was developed. A Low-Angle Laser Light Scattering Particle Analyser was used to size particles continuously over a range from 0.5 to 1000μm. This technique offers considerable unprovement over existing microscope-based methods in terms of the detail of the information and does so with less experimental effort. It was shown to be highly accurate and repeatable in preliminary investigations. Case studies of five tissue samples revealed the potential of this method

    Raman Spectroscopy and Related Techniques in Biomedicine

    Get PDF
    In this review we describe label-free optical spectroscopy techniques which are able to non-invasively measure the (bio)chemistry in biological systems. Raman spectroscopy uses visible or near-infrared light to measure a spectrum of vibrational bonds in seconds. Coherent anti-Stokes Raman (CARS) microscopy and stimulated Raman loss (SRL) microscopy are orders of magnitude more efficient than Raman spectroscopy, and are able to acquire high quality chemically-specific images in seconds. We discuss the benefits and limitations of all techniques, with particular emphasis on applications in biomedicine—both in vivo (using fiber endoscopes) and in vitro (in optical microscopes)

    Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation

    Get PDF
    There is a requirement for a noninvasive technique to monitor stem cell differentiation. Several candidates based on optical spectroscopy are discussed in this review: Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and coherent anti-Stokes Raman scattering (CARS) microscopy. These techniques are briefly described, and the ability of each to distinguish undifferentiated from differentiated cells is discussed. FTIR spectroscopy has demonstrated its ability to distinguish between stem cells and their derivatives. Raman spectroscopy shows a clear reduction in DNA and RNA concentrations during embryonic stem cell differentiation (agreeing with the well-known reduction in the nucleus to cytoplasm ratio) and also shows clear increases in mineral content during differentiation of mesenchymal stem cells. CARS microscopy can map these DNA, RNA, and mineral concentrations at high speed, and Mutliplex CARS spectroscopy/microscopy is highlighted as the technique with most promise for future applications

    Using ultraviolet absorption spectroscopy to study nanoswitches based on non-canonical DNA structures

    Get PDF
    Non-canonical forms of DNA are attracting increasing interest for applications in nanotechnology. It is frequently convenient to characterize DNA molecules using a label-free approach such as ultraviolet absorption spectroscopy. In this paper we present the results of our investigation into the use of this technique to probe the folding of quadruplex and triplex nanoswitches. We confirmed that four G-quartets were necessary for folding at sub-mM concentrations of potassium and found that the wrong choice of sequence for the linker between G-tracts could dramatically disrupt folding, presumably due to the presence of kinetic traps in the folding landscape. In the case of the triplex nanoswitch we examined, we found that the UV spectrum showed a small change in absorbance when a triplex was formed. We anticipate that our results will be of interest to researchers seeking to design DNA nanoswitches based on quadruplexes and triplexes

    An engineered E. coli strain for direct in vivo fluorination

    Get PDF
    This work was funded by the Industrial Biotechnology Innovation Centre (IBioIC) with support from GlaxoSmithKline, and also the EU Horizon 2020 (Sinfonia consortia).Selectively fluorinated compounds are found frequently in pharmaceutical and agrochemical products where currently 25–30 % of optimised compounds emerge from development containing at least one fluorine atom. There are many methods for the site‐specific introduction of fluorine, but all are chemical and they often use environmentally challenging reagents. Biochemical processes for C−F bond formation are attractive, but they are extremely rare. In this work, the fluorinase enzyme, originally identified from the actinomycete bacterium Streptomyces cattleya, is engineered into Escherichia coli in such a manner that the organism is able to produce 5′‐fluorodeoxyadenosine (5′‐FDA) from S‐adenosyl‐l‐methionine (SAM) and fluoride in live E. coli cells. Success required the introduction of a SAM transporter and deletion of the endogenous fluoride efflux capacity in order to generate an E. coli host that has the potential for future engineering of more elaborate fluorometabolites.PostprintPeer reviewe

    Label-free identification and characterization of living human primary and secondary tumour cells

    Get PDF
    Primary and secondary tumour cells exhibit biochemical differences (with Raman spectroscopy and imaging), and mechanical differences (with atomic force microscopy).</p
    corecore