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Abstract 

Many photonic and electronic devices rely on nanotechnology and nanofabrication, but 

DNA-based approaches have yet to make a significant commercial impact in these fields 

even though DNA molecules are now well-established as versatile building blocks for 

nanostructures. As we describe here, DNA molecules can be chemically modified with a 

wide variety of functional groups enabling nano-cargoes to be attached at precisely 

determined locations. DNA nanostructures can also be used as templates for the growth of 

inorganic structures. Together, these factors enable the use of DNA nanotechnology for the 

construction of many novel devices and systems. In this topical review, we discuss four case 

studies of potential applications in photonics and electronics: carbon nanotube transistors, 

devices for quantum computing, artificial electromagnetic materials and enzymatic fuel cells. 

We conclude by speculating about the barriers to the exploitation of these technologies in 

real-world settings. 
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Introduction  

Since the field of DNA nanotechnology was founded by the late Ned Seeman1, researchers 

have succeeded in building an enormous variety of self-assembling nanostructures using 

DNA molecules as building blocks2,3, often using the technique of DNA origami as invented 

by Paul Rothemund4. Through the specificity of base-pairing, DNA nanotechnology offers 

unsurpassed programmability in achieving exceptionally accurate self-assembly in 3D, and 

evaluation of patent filings and company creation suggests that the field is now sufficiently 

mature to support commercialization5. Many proposed applications lie in biomedicine6 but 

there are also valuable opportunities in physics and engineering that have so far been under-

exploited. Examples include improved manufacture of nanoscale devices for electronics and 

computing7, construction of photonic devices that provide new ways to manipulate light8, and 

the generation of electricity. For these purposes the key advantages of DNA are the ability to 

chemically modify DNA for tethering to surfaces or cargoes, the possibility of using DNA 

structures for spatially organizing moieties with nanoscale precision and the potential for 

using DNA to build nanoscale templates. The benign conditions for assembly (aqueous 

solution, no extreme chemicals or temperatures) bring ‘green’ credentials as an added bonus. 

Here, we discuss these attributes and present case studies demonstrating the use of DNA 

nanotechnology to enable advances in photonics, electronics, computing and electricity 

generation. 

 

Chemical modifications 

DNA synthesis companies offer a rich catalogue of chemical modifications of DNA, both on 

the backbone and the bases. Chemical modifications suitable for tethering include biotin, 

thiol, amino, alkyne or azide groups9. Such modifications are commonly used to immobilize 
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DNA constructs, as in the use of thiol-gold bonds to form a surface-bound DNA 

nanostructure monolayer10. In a more exotic example, DNA oligonucleotides modified with 

alkyne (octadiynyl) or azide groups were used, in combination with copper-catalyzed azide-

alkyne click chemistry, to selectively coat highly doped silicon-based ring resonators that had 

been functionalized with the appropriate complementary group11. Chemical modification is 

also key for attaching functional cargoes to DNA nanostructures, including fluorophores12, 

quantum dots13, other nanoparticles14, proteins15 etc (Fig. 1a).  

 

Precise spatial localization  

Many applications of DNA nanotechnology depend on the fact that each constituent 

oligonucleotide in a DNA nanostructure is unique and may be tagged independently with a 

specific cargo, enabling the cargos to be placed at precise positions in the final structure (Fig. 

1b). Examples of cargoes include proteins such as enzymes16,17. Recently a number of studies 

have shown that spatial control over DNA nanostructure cargoes can be used to form the 

specific patterns of biological signaling molecules that are required to cause cells to undergo 

apoptosis18,19 or induce immune activation20. Such work demonstrates in a biological setting 

the capability of DNA nanostructures to arrange cargoes precisely, which is also extremely 

valuable for applications in electronics, nanophotonics and other engineering-based 

technologies. One such example is the use of a DNA origami breadboard for construction of a 

nanoparticle heterotrimer, where energy transfer between two gold nanoparticles was 

mediated by a silver nanoparticle placed in the gap between them21. Further examples will be 

discussed below. 

 

Templating for nanofabrication 



5 
 

Many conventional electronic and photonic technologies rely on nanofabrication. Existing 

nanofabrication manufacturing approaches can be classed as ‘top-down’ or ‘bottom-up’22. 

Top-down approaches such as photolithography, electron beam lithography, scanning probe 

lithography, Molecular Beam Epitaxy, Liquid Phase Epitaxy, Focused Ion Beam lithography 

and so forth can produce sub-100nm geometries with features smaller than 20nm, however 

they are fundamentally hamstrung by their inability to deliver such features over centimeter-

scale surfaces or out-of-plane, with affordability and speed. In contrast, DNA nanotechnology 

offers an alternative route for nanofabrication, via a versatile combination of customizable 

nanoscale shapes and chemical reactions that enable them to act as three-dimensional 

templates23 for metallization, mineralization, lithography and casting (Fig. 1c-e). DNA 

nanostructures can be used for many applications other than the direct assembly of inorganic 

structures, for example as a 3D mask for reactive ion etching24, a template for assembly of 

stamps for soft lithography25 or a means to deliver site-specific doping of semiconductor 

substrates26.  Recent studies have also begun to shed more light on the underlying 

mechanisms of processes that involve depositing material on the DNA nanostructure27,28. 
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Figure 1 (a) A selection of some of the key chemical modifications and cargoes that can be used with DNA 

oligonucleotides. Some modifications can be acquired with ease from commercial suppliers whereas more 

complex conjugations require extended laboratory protocols to be carried out by the end user. The black curved 

line represents a DNA oligonucleotide, the shapes represent modifications/cargoes as shown by the labels, and 

the black square represents a linker moiety.(b) The use of DNA origami as a nanoscale breadboard. Individual 

staples are extended such that single-stranded DNA segments protrudes from the surface of the origami tile. As 

each staple has a unique sequence, corresponding to a precise location in the structure, the position of the 

extensions is determined to a high degree of precision and this may be used for spatial organization of functional 

groups or bioconjugates.  (c) Casting: the use of a DNA origami shell as a mold for the growth of metallic 

structures around a nanoparticle seed. (d) Metallization/mineralization: a DNA nanostructure of the desired 

shape is coated in a substance such as metal, silica etc, resulting in an object having approximately the shape of 

the original nanostructure. (e) Lithography: different variations on the process exist. In the approach shown 

here, the DNA nanostructure is used to construct a mask, protecting an underlying substrate (dark gray) from a 

coating/etching (pale gray).   
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Case studies  

1. Computing and carbon nanotube transistors 

Semiconductor devices and systems underpin modern electronics. The state of the art in the 

semiconductor industry is reviewed annually by a team sponsored by IEEE (the Institute of 

Electrical and Electronics Engineers), resulting in an international roadmap. The most recent 

such roadmap29 shows that the semiconductor industry continues to try to squeeze more and 

more computing power into the same space without overheating. This involves moving to 

smaller feature sizes, often exploiting extreme ultraviolet lithography (at great expense and 

complexity), but also utilizing the third dimension, while changing both hardware and 

software to reduce power consumption.  

 

Conventional computing is based on bits, which can be in one of two discrete states. 

Information processing is normally carried out by transistors, which often act like 

sophisticated electronic switches. Modern electronic systems are usually underpinned by 

silicon-based technology, but alternative approaches are being investigated, including devices 

based on carbon nanotubes30. Here, the carbon nanotube (CNT) acts as an electron channel 

between source and drain electrodes. The current is switched ‘on’ or ‘off’ by means of a gate 

electrode. A variety of CNT transistors have been tested but fabrication and performance 

challenges remain. DNA nanotechnology could provide a valuable tool for the construction 

of devices of this type. 

 

In 2010, a rectangular DNA origami tile was used to guide assembly of CNTs31 (Fig. 2ab). 

Two CNTs were attached to the tile in a cross-like formation and electrodes were fabricated 

for electronic characterization (Fig. 2c). Of six devices, one exhibited transistor-like 
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behavior. Subsequently, it was shown that an array of parallel CNTs could be formed with a 

similar technique32. In this case the origami substrate was a three-dimensional block that 

contained multiple trenches, and the spacing of the trenches enabled control over the 

separation of the CNTs (Fig. 2de).  It was demonstrated that this strategy could be used to 

build CNT field-effect transistors33 (Fig. 2f).  

 

Via templated metallization (see earlier), DNA nanostructures can also enable fabrication of 

‘interconnects’, wiring that connects different devices in a circuit. It has been shown that 

conducting metal-semiconductor junctions can be templated by DNA origami34and complex 

branched metal nanostructures can be made using DNA origami molds35. Organic materials 

can also be used, and individual polymers can be routed in curved patterns on the surface of 

DNA origami tiles36. Such polymers could potentially be made conducting for use in 

technologies that would benefit from flexible electronic circuitry, such as wearable health 

monitoring devices or bendable smartphones.   

 

Future studies could use a combination of the technologies described here to produce 

integrated circuits with multiple components and complex wiring pathways.  For a broader 

review of DNA-based nanoelectronics, the reader is referred to the review by Hui et al7.  
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Figure 2. (a) Method for attaching carbon nanotubes site-specifically in a cross shape to a DNA origami 

substrate. (b) Image acquired using Atomic Force Microscopy, showing correct assembly. The scale bar is 

50nm. The two nanotubes (long thin structures) have different types of DNA tags (indicated by red and blue 

labels) for attachment to a rectangular DNA origami tile, which itself is connected to a DNA ribbon that extends 

at an angle towards the bottom right of the image. (c) Sketch showing how the nanotubes are connected to 

electrodes in a transistor-like configuration. (d) Arranging carbon nanotubes in an array with precisely 

determined inter-tube separation. (e) Transmission Electron Micrograph of the structure from part (d). (f) 

Carbon nanotube field-effect transistors fabricated using the method of part (d)-(e). In the left-most image, the 

purple objects are the source and drain electrodes, carbon nanotubes are shown in yellow, and the blue blocks 

are metal bars. Parts (a) and (b) are Reprinted from Ref. 31 with permission from Springer Nature, Nature 

Nanotechnology, Copyright 2009. Part (d) and (e) are from Ref. 32, reprinted with permission from AAAS. Part 

(f) is from Ref. 33, reprinted with permission from AAAS.  
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2. Quantum computing 

One trend identified in the International Roadmap for Devices and Systems is the 

development of quantum computing29, which is based on qubits37. Unlike the ‘bits’ of 

conventional computers, each qubit can exist in a superposition of two states at the same 

time, enabling quantum computers to process information in a radically different way, 

sometimes much faster than a classical computer. 

 

In order for a quantum computer to be realized, it is necessary to build structures that can 

support qubits, keep them stable, and manipulate them. Qubits can be realized using photons, 

trapped ions/atoms, or electrons. It has been suggested that it would be advantageous to 

develop quantum computing systems based on silicon hardware38, to help with interfacing 

quantum computers and their classical counterparts. There are many challenges for the 

implementation of silicon-based quantum computers, some of which relate to the fabrication 

of the devices. It is conceivable that DNA nanotechnology could play a role here, providing a 

way to make nanoscale structures that could not be synthesized using standard top-down 

methods. 

 

Some quantum information processing systems make use of Josephson junctions (Fig. 2a), 

consisting of two regions of superconducting material separated by a small insulating region 

across which electrons can tunnel. A Josephson junction is well-suited to the creation of 

qubits and a variety of circuit designs can be used39. Interestingly, DNA nanostructures can 

be used to assemble three-dimensional arrays of Josephson junctions40 (Fig. 2b). The process 

began with the assembly of octahedra, in which each edge consisted of a six helix DNA 
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origami bundle. The octahedra were assembled into a lattice before being coated with silica 

and niobium. In the resultant structure,  superconductivity began at 3.8K.  Further 

characterization suggested that the lattice comprised a three-dimensional array of Josephson 

junctions (Fig. 2c), such a structure being unattainable with conventional methods. This 

indicates how DNA nanotechnology could in future potentially help to address challenges 

involved in fabrication of quantum computing hardware, overcoming limitations of 

conventional nanofabrication methods. However, a great deal of work remains. Not only will 

it be necessary to demonstrate that DNA-templated structures can support stable qubits, but 

massively scaled-up production will be required. 

 

Qubits can also be realized using organic chromophores and acceptor molecules. When the 

chromophore is photoexcited and transfers charge to the acceptor, this sometimes results in 

the creation of a ‘spin qubit pair’. The chromophore and acceptor can be held in position 

relative to each other using a DNA scaffold, and the addition of a covalently bound radical 

could enable development of a three-spin system41 (Fig. 3c) . It has been noted that the use of 

chemistry and molecular engineering for quantum information systems is potentially a very 

powerful approach42.   Considering this and the other possibilities mentioned above, there 

already appears to be reason to believe that DNA nanotechnology methods could have an 

impact in the area of quantum computing, despite the fact the latter field is still in its infancy. 

It may be helpful to combine DNA-scaffolded quantum information systems with DNA-

templated nanophotonic structures (next section). 
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Figure 3: (a) Schematic illustration of a Josephson junction, consisting of a thin layer of 

insulating material sandwiched between two pieces of superconductor. (b) The assembly of 

DNA octahedra into a superlattice that was then coated with silica and niobium. There is a 

nanoparticle inside each octahedron. (c) The current-voltage characteristics of the resultant 

superlattice at temperatures of 3.7K (just below the superconducting transition temperature) 

and 1.9K. The data for 1.9K has been fitted with the I-V characteristic of a Josephson 

junction. (b) and (c) are reproduced from Ref. 40 under a CC-BY license. (d) Schematic 

diagram of the DNA structures described in Ref. 41, where the chromophore (hole donor) 

covalently links the two DNA strands. As indicated, only one guanine residue is present and a 

radical is attached to the DNA. The resultant structure can be used to generate a three-spin 

system.  
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3. Nanophotonics  

DNA nanotechnology has a plethora of applications in photonics8,43,44 , relying on nanoscale 

patterning and precise spatial arrangement of cargoes. Here we focus on selected examples.  

 

The notion of artificial electromagnetic materials (AEMs) was conceived over a century 

ago45; fabricating arrays of conducting objects within a nonconducting matrix can result in a  

composite material that achieves bespoke electromagnetic properties. The vital prerequisite 

for the macroscopic composite is that it possesses a periodic structure with active features of 

dimensions and lattice spacing smaller than the length of the electromagnetic wave (Fig. 4a). 

Indeed, if size of the active features is sufficiently small then these may act as an effective 

medium, i.e. the electromagnetic wave will experience the material as a monolithic entity. 

Examples of AEMs (also known as optical metamaterials) include among other examples 

materials with negative refractive index and photonic crystals46 . The 1940-70s saw the 

accelerated development of AEMs in the microwave region (wavelengths of 30 – 0.1 cm) but 

until recently AEMs in the optical regime (400-700 nm), also known as optical 

metamaterials, were unmanufacturable. However, such materials are of considerable interest 

as they open the door to new ways of manipulating light, providing functions such as 

enhanced imaging capability or invisibility cloaks. 

 

To produce a macroscale AEM will require 100s of billions of active features, manufactured 

and assembled with exceptionally high fidelity and precision. The utilization of DNA 

nanotechnology for the fabrication of nanophotonic devices offers a number of compelling 

advantages, whichhave been demonstrated over the last decade in a number of studies, two of 

which amply illustrate its power; nanocavities and chiral structures. 
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Nanocavities are used to confine light using resonating modes at sub-wavelength scales. 

These have seen much use in the quantum optical studies, in particular the creation of hybrid 

systems with nanocavities and single emitters (fluorophores or quantum dots), as shown for 

example in Ref. 47. The fabrication of such systems demands the deterministic placement of 

the emitters within the nanocavity, a task requiring accuracy orders of magnitude smaller than 

the wavelength48. Gopinath et al.49 pioneered the use of DNA structures to control the 

position of a dye molecule within a photonic crystal cavity (PCC); by targeting the dye to 

different locations on a DNA structure located within the PCC, they demonstrated tunable 

emission corresponding to the electric field intensity within the PCC. The same group has 

gone on to develop control over the relative angle between the dipole of fluorescent dyes and 

the polarization of the incident light, thereby governing device brightness50. 

 

DNA nanotechnology has also opened up avenues in study of chiral structures. In its optical 

sense, chirality allows a structure to differently absorb left- and right-handed circularly 

polarized light. Once more DNA nanotechnology’s ability to self-assemble these structures 

has propelled the emergence of a significant body of study using such systems51, catalyzed by 

the marker laid down by Kuzyk et al.52(Fig. 4b). This study used a DNA nanorod as a 

scaffold to attach a helical string of gold nanospheres with a designed chiroptical response 

(Fig. 3b). Left- and right-handed arrangements of the nanosphere were both shown to 

generate the characteristic bisignate circular dichroism spectra, centered at the resonant 

frequency of the individual nanosphere.  
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Overall, DNA nanotechnology has become a “go-to” solution for basic research in 

nanophotonics but as yet there are very few commercialization successes to celebrate. Further 

technical development is required to de-risk the transition away from conventional materials, 

particularly in the context of scaling up to larger areas and mass production. Detailed 

economic assessment and life cycle analysis would be of particular benefit.  

 

Figure 4. (a) Depiction of an artificial electromagnetic material (otherwise known as an optical metamaterial). 

The periodicity and feature size are significantly smaller than the wavelength of the electromagnetic wave, 

which interacts with the metamaterial as if it is an effective medium with engineered electromagnetic properties. 

(b) Gold nanoparticles arranged on a DNA origami bundle via thiol-modified linkers. Reprinted from Ref. 52 

with permission from Springer Nature, Nature, Copyright 2012. The two designs have opposite chirality and this 

affects the way in which the structures interact with circularly polarized light, such that the circular dichroism 

spectrum of one exhibits a flipped sign relative to that of the other. 

4. Biobatteries  

Climate change and increasing use of electrical devices are driving research on new 

technologies for the energy sector. Bioengineering has the potential to make a valuable 
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contribution to these efforts, and the term ‘electrosynbionics’ has been coined to describe the 

‘creation of engineered devices that use components derived from or inspired by biology’ for 

electricity generation, use and storage53. This includes biophotovoltaics and biobatteries, 

among other technologies. Enzymatic fuel cells are a type of biological battery in which 

reactions catalyzed by enzymes generate a flow of electrons (Fig. 5a). In one particularly 

interesting example, 13 different enzymes were used and a maximum current of 6 mA cm−2 

was achieved54. It was suggested that this device could have an energy storage density (in 

terms of energy stored per kg) an order of magnitude higher than lithium-ion batteries. 

 

DNA nanotechnology has a potential role to play in the development of the next generation 

of enzymatic fuel cells. As will be described shortly, a DNA-based hydrogel can be used as a 

medium for an enzymatic fuel cell, where a hydrogel consists of a network of linked 

polymers that contains a significant amount of absorbed water. Various DNA hydrogels have 

been reported, including one that was described as a ‘mechanical metamaterial’55. Another 

technique for hydrogel formation involves structures called ‘Y-DNA’ and ‘linkers’, and this 

was the approach used for the DNA hydrogel biobattery56(Fig. 5b). The Y-DNA was a three-

way junction made from double-stranded DNA segments, with single-stranded sticky ends at 

all three termini. The linkers were duplexes with single-stranded overhangs at both ends. The 

enzyme glucose oxidase and mediator Fc-COOH were added to the mixture of DNA 

components. The resulting gel was applied to a stainless-steel mesh anode and used with an 

air-breathing cathode, giving rise to an enzymatic fuel cell. Upon fuel addition, the maximum 

power density was approximately 300µW cm-2, over six and a half times the value observed 

in the absence of enzyme. It was later demonstrated that redox mediators could bind to the 

DNA, potentially provide a way to enhance electron transfer to the electrode57. Based on 
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recent news stories from the researchers and funders, further work appears to be in progress58-

60.  

 

DNA hydrogels share with origami structures the potential for straightforward assembly 

under benign conditions, and in both cases the product poses minimal hazard, unlike more 

conventional devices that rely on more dangerous materials.  For future development of DNA 

hydrogel biobatteries, it will be important to maximize energy and power density by 

perfecting the electron transfer pathway and choice of enzymes/substrates. The longevity and 

stability of the battery will need to be optimized, and the end-of-life disposal route must be 

confirmed.  
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Figure 5. (a) Schematic illustration of the mechanism of an enzymatic fuel cell. The enzymes may be 

immobilized on the electrodes (perhaps covalently attached or trapped with polymers) or floating freely in 

solution. Additional redox-active compounds (not shown) may be added as mediators to enable electron transfer 

to the electrodes. In some implementations a semi-permeable membrane (not shown) may be present in the cell 

to separate the two electrodes. The reaction catalyzed by the enzymes pushes/pulls electrons into/out of the 

electrodes, and this drives current flow through an external resistive load, across which a voltage may be 

measured as shown.  (b) Encapsulation of enzyme GOx (Glucose Oxidase, yellow splodge) in a DNA hydrogel 

made from L-DNA linkers and Y-DNA three-way junctions. The DNA linkers and Y-shapes shown on the left 

assemble into the hydrogel shown on the right, in which GOx molecules are trapped. Reproduced from Ref. 56 

with permission from the Royal Society of Chemistry permission conveyed through Copyright Clearance 

Center, Inc.  
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Discussion & conclusion  

Here, we have discussed examples of the use of DNA nanotechnology for applications in 

photonics and electronics. In addition to the case studies presented, it is worth noting that 

DNA nanostructures can be used in combination with other lithography techniques61 such as 

nanosphere lithography62,63 or top-down methods24,64-66. In all the examples we considered, 

DNA nanotechnology offers great advantages in spatial precision and versatility, while 

enabling assembly under benign conditions. Despite this, these approaches have not yet been 

fully exploited and further development is required for the full potential to be realized, 

particularly in connection with scaling up to commercial production levels. One aspect of this 

is the preparation of the DNA itself.  

 

For many applications, chemical synthesis of oligonucleotides would be prohibitively 

expensive. DNA synthesis costs continue to fall, but alternative approaches are also being 

explored, for example using ‘biotechnological mass production’67 . Widespread deployment 

of new DNA synthesis methods could make DNA nanotechnology solutions more cost-

effective, as has been demonstrated in the biomedical arena by modelling the economics of 

DNA nanostructure-based drug delivery68.  

 

A second aspect of scaling up is the fidelity of assembly of nanostructures into bigger 

structures or arrays with a large surface area, as recently reviewed in Ref. 69. Several research 

groups have made impressive advances in this area, including surface-assisted assembly70 of 

tessellating origami triangles over 18.75 cm2 and the realization of ‘supershapes’ using criss-

cross assembly of origami ‘slats’71.  
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In general, translation of DNA nanotechnology research would be facilitated by a more 

problem-driven approach, where the design of devices is shaped by a detailed understanding 

of the needs of a particular target market and a focused device specification of. Coupled with 

effective means to reduce cost and scale up, this attitude has the potential to enable DNA 

nanotechnology to underpin a new generation of exciting products for photonic and electronic 

applications.  
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