10 research outputs found

    Organisatievormen van research en development als managementvraagstuk

    Get PDF
    keywords: worden binnen ondememingen organisatievormen wordt tussen hebben ondememing aantal verklarende model project hoofdstuk paragraaf technologische kunnen welke management kenni ontwikkelingstermij

    Make, buy or cooperate decisions with respect to research and development in international business networks

    Get PDF
    Introduction. Research and Development (R&D) is one of the most important business activities of the next decade (Porter, 1990). Commercialization of technological know how is essential for survival of firms (Teece, 1987). Organizational forms of R&D are one of the main competitive advantages of firms. The importance of cooperative agreements and networks as an alternative for in-house R&D is increasing (E.C., 1991; OTA, 1990). Collaborative agreements are of strategic importance for a firm (Hakansson, 1990). The number of international cooperative agreements has increased. For example, more than 30% of cooperative agreements in biotechnology are between companies from different parts of the world (Hagedoorn & Schakenraad, 1990)...

    Naar een verklaring van R&D organisatievormen

    Get PDF
    Inleiding. Het onderzoek naar de diverse vormen van samenwerking tussen organisaties, bijvoorbeeld joint ventures en strategische allianties, speelt zich doorgaans af op het analyseniveau van de organisaties zelf. Aan samenwerkingsverbanden tussen organisaties op een functioneel managementgebied, bijvoorbeeld produktie, Research & Development (R&D) en marketing, wordt in de literatuur minder aandacht besteed. Terwijl produktie en met name R&D voor veel ondernemingen in de jaren negentig tot de belangrijkste functionele managementgebieden zullen gaan behoren (Porter, 1990). Levenscycli van diverse produkten zullen verkorten door versnelde technologische ontwikkeling, zich snel wijzigende consumentenvoorkeuren en hogere kwaliteitseisen. Hierdoor zullen veel ondernemingen gedwongen zijn tot het opvoeren van hun R&D inspanning, zelf of in samenwerking met anderen, en flexibilisering van de organisatiestructuur...

    Complete APTX deletion in a patient with ataxia with oculomotor apraxia type 1

    Get PDF
    Background: Ataxia with oculomotor apraxia type 1 is an autosomal-recessive neurodegenerative disorder characterized by a childhood onset of slowly progressive cerebellar ataxia, followed by oculomotor apraxia and a severe primary motor peripheral axonal motor neuropathy. Ataxia with oculomotor apraxia type 1 is caused by bi-allelic mutations in APTX (chromosome 9p21.1). Case presentation: Our patient has a clinical presentation that is typical for ataxia with oculomotor apraxia type 1 with no particularly severe phenotype. Multiplex Ligation-dependent Probe Amplification analysis resulted in the identification of a homozygous deletion of all coding APTX exons (3 to 9). SNP array analysis using the Illumina Infinium CytoSNP-850 K microarray indicated that the deletion was about 62 kb. Based on the SNP array results, the breakpoints were found using direct sequence analysis: c.-5 + 1225_*44991del67512, p.0?. Both parents were heterozygous for the deletion. Homozygous complete APTX deletions have been described in literature for two other patients. We obtained a sample from one of these two patients and characterized the deletion (156 kb) as c.-23729_*115366del155489, p.0?, including the non-coding exons 1A and 2 of APTX. The more severe phenotype reported for this patient is not observed in our patient. It remains unclear whether the larger size of the deletion (156 kb vs 62 kb) plays a role in the phenotype (no extra genes are deleted). Conclusion: Here we described an ataxia with oculomotor apraxia type 1 patient who has a homozygous deletion of the complete coding region of APTX. In contrast to the patient with the large deletion, our patient does not have a severe phenotype. More patients with deletions of APTX are required to investigate a genotype-phenotype effect

    Comparison of the functional and structural characteristics of rare TSC2 variants with clinical and genetic findings

    Get PDF
    The TSC1 and TSC2 gene products interact to form the tuberous sclerosis complex (TSC), an important negative regulator of the mechanistic target of rapamycin complex 1 (TORC1). Inactivating mutations in TSC1 or TSC2 cause TSC, and the identification of a pathogenic TSC1 or TSC2 variant helps establish a diagnosis of TSC. However, it is not always clear whether TSC1 and TSC2 variants are inactivating. To determine whether TSC1 and TSC2 variants of uncertain clinical significance affect TSC complex function and cause TSC, in vitro assays of TORC1 activity can be employed. Here we combine genetic, functional, and structural approaches to try and classify a series of 15 TSC2 VUS. We investigated the effects of the variants on the formation of the TSC complex, on TORC1 activity and on TSC2 pre-mRNA splicing. In 13 cases (87%), the functional data supported the hypothesis that the identified TSC2 variant caused TSC. Our results illustrate the benefits and limitations of functional testing for TSC

    Variable loss of functional activities of androgen receptor mutants in patients with androgen insensitivity syndrome

    Get PDF
    Androgen receptor (AR) mutations in androgen insensitivity syndrome (AIS) are associated with a variety of clinical phenotypes. The aim of the present study was to compare the molecular properties and potential pathogenic nature of 8 novel and 3 recurrent AR variants with a broad variety of functional assays. Eleven AR variants (p.Cys177Gly, p.Arg609Met, p.Asp691del, p.Leu701Phe, p.Leu723Phe, p.Ser741Tyr, p.Ala766Ser, p.Arg775Leu, p.Phe814Cys, p.Lys913X, p.Ile915Thr) were analyzed for hormone binding, transcriptional activation, cofactor binding, translocation to the nucleus, nuclear dynamics, and structural conformation. Ligand-binding domain variants with low to intermediate transcriptional activation displayed aberrant Kd values for hormone binding and decreased nuclear translocation. Transcriptional activation data, FxxFF-like peptide binding and DNA binding correlated well for all variants, except for p.Arg609Met, p.Leu723Phe and p.Arg775Leu, which displayed a relatively higher peptide binding activity. Variants p.Cys177Gly, p.Asp691del, p.Ala766Ser, p.Phe814Cys, and p.Ile915Thr had intermediate or wild type values in all assays and showed a predominantly nuclear localization in living cells. All transcriptionally inactive variants (p.Arg609Met, p.Leu701Phe, p.Ser741Tyr, p.Arg775Leu, p.Lys913X) were unable to bind to DNA and were associated with complete AIS. Three variants (p.Asp691del, p.Arg775Leu, p.Ile915Thr) still displayed significant functional activities in in vitro assays, although the clinical phenotype was associated with complete AIS. The data show that molecular phenotyping based on 5 different functional assays matched in most (70%) but not all cases. Copyrigh

    Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics

    Get PDF
    Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.Genetics of disease, diagnosis and treatmen
    corecore