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Abstract

Background: Ataxia with oculomotor apraxia type 1 is an autosomal-recessive neurodegenerative disorder
characterized by a childhood onset of slowly progressive cerebellar ataxia, followed by oculomotor apraxia and a
severe primary motor peripheral axonal motor neuropathy. Ataxia with oculomotor apraxia type 1 is caused by
bi-allelic mutations in APTX (chromosome 9p21.1).

Case presentation: Our patient has a clinical presentation that is typical for ataxia with oculomotor apraxia type 1
with no particularly severe phenotype. Multiplex Ligation-dependent Probe Amplification analysis resulted in the
identification of a homozygous deletion of all coding APTX exons (3 to 9). SNP array analysis using the Illumina
Infinium CytoSNP-850 K microarray indicated that the deletion was about 62 kb. Based on the SNP array results, the
breakpoints were found using direct sequence analysis: c.-5 + 1225_*44991del67512, p.0?. Both parents were
heterozygous for the deletion. Homozygous complete APTX deletions have been described in literature for two
other patients. We obtained a sample from one of these two patients and characterized the deletion (156 kb) as
c.-23729_*115366del155489, p.0?, including the non-coding exons 1A and 2 of APTX. The more severe phenotype
reported for this patient is not observed in our patient. It remains unclear whether the larger size of the deletion
(156 kb vs 62 kb) plays a role in the phenotype (no extra genes are deleted).

Conclusion: Here we described an ataxia with oculomotor apraxia type 1 patient who has a homozygous deletion
of the complete coding region of APTX. In contrast to the patient with the large deletion, our patient does not
have a severe phenotype. More patients with deletions of APTX are required to investigate a genotype-phenotype effect.
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Background
Ataxia with oculomotor apraxia type 1 (AOA1) is an
autosomal-recessive neurodegenerative disorder mainly
characterized by a childhood onset of slowly progressive
cerebellar ataxia, oculomotor apraxia, dysarthria, limb
dysmetria, motor and sensory axonal neuropathy [1–3].
Clinical symptoms can also include dystonia, chorea,
optic atrophy and cognitive impairment. AOA1 is caused
by homozygosity or compound heterozygosity for muta-
tions in APTX, the gene that encodes the protein Apra-
taxin [4, 5]. Aprataxin is a member of the histidine triad
(HIT) superfamily and plays a role in DNA-single-strand

break repair [6–12]. The pathological mechanism lead-
ing to the neurodegenerative phenotype, as observed for
AOA1 patients, is still unknown.
In the current report we describe the extensive clin-

ical and molecular genetic testing of an AOA1 patient
who is homozygous for a complete APTX deletion ra-
ther than compound heterozygous for point mutations
in APTX as is normally found in AOA1 patients. We
also introduce the Leiden Open (source) Variation
Database for APTX mutations.

Case presentation
Case report
Our index patient is the first child of healthy non-
consanguineous Moroccan parents. He has two healthy
brothers and parents refer no family history of interest. He
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was born after a normal gestation and both delivery and
neonatal period were unremarkable. He started walking
around 12 months and his parents considered his lan-
guage development normal during the first years. At age
3 years, his parents started to notice abnormal ocular
movements, walking disorder with frequent falls and lan-
guage difficulties. He was clinically diagnosed with cere-
bellar ataxia. Cranial Computed Tomography and cranial
Magnetic Resonance imaging (MRI) scans showed cere-
bellar atrophy (for MRI scan see Additional file 1). At age
6 years the child was referred to the Neuropaediatrics unit
of the Sabadell university hospital in Spain. Neurological
exam showed oculomotor apraxia, ataxic gait and dysme-
tria. Furthermore, he also presented distal limb dystonia,
bilateral spontaneous Babinski and rotulian and achillean
hyporeflexia. Blood levels of albumin, cholesterol, immu-
noglobulins, alpha-fetoprotein and carcinoembryonic anti-
gen were all normal. Vitamin E levels at age 7 years,
however, were low (repeated measurements: 1.3 μg/ml
and 0.4 μg/ml; normal range 3–15 μg/ml). Because of
the low vitamin E levels, molecular testing of the gene
involved in vitamin E deficiency, TTPA, was performed
[13]. No abnormalities were observed. Vitamin E levels
returned to normal (11.7 μg/ml) after oral vitamin E treat-
ment. Results of the Brainstem Auditory Evoked Response
(BAER) test and the ophthalmologic and cardiological as-
sessments were all normal. Electromyography (EMG) at
age 7 years showed a discrete reduction of the sural sen-
sory nerve action potential (SNAP) amplitude. At age
9 years the EMG results were in agreement with sensitive
axonal polyneuropathy. No abnormalities were found in
the gene involved in Ataxia-telangiectasia, ATM [14]. Fi-
nally, molecular testing of APTX was performed.

APTX sequencing and MLPA
All seven coding exons (exons 3 to 9B) and exon/intron
boundaries of APTX (NM_175073.2, isoform a, GRCh
build 37 (UCSC hg19, February 2009)) were screened
using direct sequence analysis (primers available upon re-
quest). Although we have previously used this setup to test
for mutations in APTX (n = 158 index patients tested, 17
different APTX variants found (for 9 novel APTX variants
see Additional file 2), also see http://www.lovd.nl/aptx, in
total 45 APTX sequence variants), we were unable to amp-
lify all exons, raising the possibility that APTX was not
present on both alleles (homozygous deletion) of our pa-
tient. Therefore, the SALSA Multiplex Ligation-dependent
Probe Amplification (MLPA) kit P316 (MRC Holland,
Amsterdam, The Netherlands) was used to detect large
deletions in APTX. MLPA analysis was performed accord-
ing to manufacturer’s instructions. MLPA products were
run on an ABI 3730XL automated sequencer (Applied
Biosystems, Foster City, CA, USA) and data was analyzed
using Genemarker software version 2.4 (Softgenetics, State

College, PA, USA). MLPA analysis resulted in the identifi-
cation of a deletion of exons 3 to 9. The non-coding exons
1 and 2 were not deleted. The peak ratio was clearly zero
instead of 0.5, indicating that the deletion was homozy-
gous and not heterozygous. The MLPA results were in
agreement with the sequence analysis findings.

SNP array analysis
SNP array analysis was performed to confirm the MLPA
finding and to further characterize the deletion. The Illu-
mina Infinium CytoSNP-850 K microarray was used in
combination with the Illumina platform and the Nexus
Copy Number 7.0 software (BioDiscovery, El Segundo,
CA, USA) according to standard protocols of the manu-
facturer. A deletion of 62 kb between positions 32.932.194
and 32.994.500 on chromosome chr9p21.1 (NCBI 37;
UCSC hg19) was found (see Fig. 1a). Both the Log2ratio
and the b-allele frequency (not shown in Fig. 1) indicate
that the deletion is present in homozygous form. The dele-
tion is in agreement with the MLPA results.

Breakpoint mapping
Breakpoint mapping of the deletion was performed to
characterize the exact breakpoints of the deletion. Based
on the SNP array results, the breakpoints were found
using direct sequence analysis. The exact nomenclature
of the APTX deletion is c.-5 + 1225_*44991del67512,
p.0?. A breakpoint specific PCR was developed (primers
available upon request, for more details see reference
[15]), confirming the homozygous occurrence of the de-
letion in the index patient. Both parents were heterozy-
gous for the c.-5 + 1225_*44991del67512, p.0? deletion
and were therefore identified as carriers of AOA1.

Discussion
Most of the AOA1 patients are homozygous or com-
pound heterozygous for a pathogenic point mutation in
APTX. In the present report we describe a AOA1 patient
who has a homozygous deletion of the complete coding
region of APTX. Homozygous APTX deletions have been
previously reported in a Tunisian family and a Pakistani pa-
tient [16, 17]. These deletions were found using southern
blotting, after sequence fragments of all exons failed to
amplify. Confirmation and characterization with more
modern techniques like MLPA analysis and array analysis
was not performed. Because their molecular analyses also
lack breakpoint mapping we could not check whether our
APTX deletion is the exactly the same deletion. We were
however able to obtain a DNA sample of the patient of
Yoon et al. SNP array analysis and breakpoint mapping,
performed as described above, indicated a 156 kb APTX
deletion,
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c.-23729_*115366del155489, p.0? (APTX, exon 01A
tm 09B), including the two non-coding APTX exons 1A
and 2 (also see Fig. 1b).
The more severe phenotype reported for the patient of

Yoon et al. [17], including fast deterioration and cogni-
tive impairment, is not observed in our patient. It re-
mains unclear whether the larger size of the deletion
(156 kb vs 62 kb) plays a role in the phenotype. No extra
genes are deleted, however, the two non-coding APTX
exons 1 and 2B are deleted in the patient of Yoon et al.
(also see Fig. 1). The function of these two exons is not
studied. It is possible that this region contains regulatory el-
ements that play in role in the transcription of (distance)
genes, other than APTX, that might explain the more se-
vere phenotype. Furthermore, a possible role of the differ-
ent APTX transcripts in the AOA1 phenotype is not
studied to date. Even though the predominant transcript in
human tissues, NM_175073.2, contains both non-coding
exons, several APTX transcripts exist that lack exons 1
and/or 2B [18]. Finally, a third option explaining the differ-
ence in phenotype between our patient and the patient of
Yoon et al. is coincidence rather than a genetic feature. So
far, genotype-phenotype correlations were only studied for
a limited set of APTX point mutations [11, 12, 19]. More
patients with deletions of APTX are required to investigate
a genotype-phenotype effect. We were unfortunately unable
to contact Amouri et al. to request a DNA sample [16].

Therefore, the size of the APTX deletion is unknown for
their patient, neither do we know whether the two non-
coding APTX exons are deleted in their patient. This is es-
pecially unsatisfactory because the typical AOA1 clinical
presentation of our patient is similar to that reported for
the patient of Amouri et al. [16].
To our knowledge, a database with APTX genetic

variants was not available when writing this report. Be-
cause databases can be helpful in classifying variants
we have launched a APTX database in LOVD (Leiden
Open Variation Database) format [20]. All our muta-
tions, including the total APTX deletion, and some
well-known variants from literature were deposited in
this database (accessible at http://www.lovd.nl/aptx).
We will continue to update this database with new var-
iants and encourage other APTX diagnostic labs to do
the same.

Conclusions
In conclusion, here we described the extensive clinical
and genetic analysis of a AOA1 patient homozygous for
a complete deletion of the coding exons of APTX. Our
patient has a typical AOA1 clinical presentation without
a severe phenotype. More patients with clearly charac-
terized APTX deletions are required to investigate a
genotype-phenotype effect.

Fig. 1 Results SNP array analysis. Indicated in the figure are the zygosity (heterozygous: yellow bars; homozygous: red bars) and Log2Ratio (reds
square: deleted region based on Log2Ratio) tracks, the locations of APTX and surrounding genes on chromosome 9p21.1 (NCBI 37; UCSC hg19),
and the exon numbering of APTX for our index patient (a) and the reference sample of Dr. Yoon et al. (b)
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Consent
Written informed consent was obtained from the patient
for publication of this Case report and any accompanying
images. A copy of the written consent is available for re-
view by the Editor of this journal

Additional files

Additional file 1: MRI scan of index patient(white arrow). (PDF 307 kb)

Additional file 2: Novel APTX variants. (PDF 65 kb)
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