8 research outputs found

    Evaluation of Colon-Specific Plasma Nanovesicles as New Markers of Colorectal Cancer

    Get PDF
    Purpose: Developing new and efficient approaches for the early diagnosis of colorectal cancer (CRC) is an important issue. Circulating extracellular nanovesicles (ENVs) present a promising class of cancer markers. Cells of well-differentiated adenocarcinomas retain the molecular characteristics of colon epithelial cells, and the ENVs secreted by these cells may have colon-specific surface markers. We hypothesize that an increase in the number of ENVs carrying colon-specific markers could serve as a diagnostic criterion for colorectal cancer. Experimental design: Potential colon-specific markers were selected based on tissue-specific expression profile and cell surface membrane localization data. Plasma was collected from CRC patients (n = 48) and healthy donors (n = 50). The total population of ENVs was isolated with a two-phase polymer system. ENVs derived from colon epithelium cells were isolated using immune-beads with antibodies to colon-specific markers prior to labelling with antibodies against exosomal tetraspanins (CD63 and CD9) and quantification by flow cytometry. Results: The number of ENVs positive for single colon cancer markers was found to be significantly higher in the plasma of CRC patients compared with healthy donors. The efficacy of detection depends on the method of ENV labelling. The diagnostic efficacy was estimated by ROC analysis (the AUC varied between 0.71 and 0.79). The multiplexed isolation of colon-derived ENVs using immune-beads decorated with antibodies against five markers allowed for a further increase in the diagnostic potency of the method (AUC = 0.82). Conclusions: ENVs derived from colon epithelium may serve as markers of differentiated CRC (adenocarcinomas). The composition of ligands used for capturing colon-derived ENVs and their method of labelling are critical for the efficacy of this proposed diagnostic approach

    CM-Dil Staining and SEC of Plasma as an Approach to Increase Sensitivity of Extracellular Nanovesicles Quantification by Bead-Assisted Flow Cytometry

    No full text
    The quantification of the specific disease-associated populations of circulating extracellular membrane nanovesicles (ENVs) has opened up new opportunities for liquid biopsy in cancer and other chronic diseases. However, the sensitivity of such methods is mediated by an optimal combination of the isolation and labeling approaches, and is not yet sufficient for routine clinical application. The presented study aimed to develop, characterize, and explore a new approach to non-specific ENV staining, followed by size-exclusive chromatography (SEC), which allows us to increase the sensitivity of bead-assisted flow cytometry. Plasma from healthy donors was purified from large components, stained with lipophilic CM-Dil dye, and fractionated by means of SEC. The obtained fractions were analyzed in terms of particle size and concentration using NTA, as well as vesicular markers and plasma protein content via dot-blotting. We characterized the process of CM-Dil-stained plasma fractionation in detail and indicated the fractions with optimal characteristics. Finally, we explored the sensitivity of on-bead flow cytometry for the analysis of specific populations of plasma ENVs and demonstrated the advantages and limitations of the proposed technique

    Evaluation of Colon-Specific Plasma Nanovesicles as New Markers of Colorectal Cancer

    No full text
    Purpose: Developing new and efficient approaches for the early diagnosis of colorectal cancer (CRC) is an important issue. Circulating extracellular nanovesicles (ENVs) present a promising class of cancer markers. Cells of well-differentiated adenocarcinomas retain the molecular characteristics of colon epithelial cells, and the ENVs secreted by these cells may have colon-specific surface markers. We hypothesize that an increase in the number of ENVs carrying colon-specific markers could serve as a diagnostic criterion for colorectal cancer. Experimental design: Potential colon-specific markers were selected based on tissue-specific expression profile and cell surface membrane localization data. Plasma was collected from CRC patients (n = 48) and healthy donors (n = 50). The total population of ENVs was isolated with a two-phase polymer system. ENVs derived from colon epithelium cells were isolated using immune-beads with antibodies to colon-specific markers prior to labelling with antibodies against exosomal tetraspanins (CD63 and CD9) and quantification by flow cytometry. Results: The number of ENVs positive for single colon cancer markers was found to be significantly higher in the plasma of CRC patients compared with healthy donors. The efficacy of detection depends on the method of ENV labelling. The diagnostic efficacy was estimated by ROC analysis (the AUC varied between 0.71 and 0.79). The multiplexed isolation of colon-derived ENVs using immune-beads decorated with antibodies against five markers allowed for a further increase in the diagnostic potency of the method (AUC = 0.82). Conclusions: ENVs derived from colon epithelium may serve as markers of differentiated CRC (adenocarcinomas). The composition of ligands used for capturing colon-derived ENVs and their method of labelling are critical for the efficacy of this proposed diagnostic approach

    Formation and Evaluation of a Two-Phase Polymer System in Human Plasma as a Method for Extracellular Nanovesicle Isolation

    No full text
    The aim of the study was to explore the polyethylene glycol–dextran two-phase polymer system formed in human plasma to isolate the exosome-enriched fraction of plasma extracellular nanovesicles (ENVs). Systematic analysis was performed to determine the optimal combination of the polymer mixture parameters (molecular mass and concentration) that resulted in phase separation. The separated phases were analyzed by nanoparticle tracking analysis and Raman spectroscopy. The isolated vesicles were characterized by atomic force microscopy and dot blotting. In conclusion, the protein and microRNA contents of the isolated ENVs were assayed by flow cytometry and by reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR), respectively. The presented results revealed the applicability of a new method for plasma ENV isolation and further analysis with a diagnostic purpose

    Evaluation of Colon-Specific Plasma Nanovesicles as New Markers of Colorectal Cancer

    No full text
    Purpose: Developing new and efficient approaches for the early diagnosis of colorectal cancer (CRC) is an important issue. Circulating extracellular nanovesicles (ENVs) present a promising class of cancer markers. Cells of well-differentiated adenocarcinomas retain the molecular characteristics of colon epithelial cells, and the ENVs secreted by these cells may have colon-specific surface markers. We hypothesize that an increase in the number of ENVs carrying colon-specific markers could serve as a diagnostic criterion for colorectal cancer. Experimental design: Potential colon-specific markers were selected based on tissue-specific expression profile and cell surface membrane localization data. Plasma was collected from CRC patients (n = 48) and healthy donors (n = 50). The total population of ENVs was isolated with a two-phase polymer system. ENVs derived from colon epithelium cells were isolated using immune-beads with antibodies to colon-specific markers prior to labelling with antibodies against exosomal tetraspanins (CD63 and CD9) and quantification by flow cytometry. Results: The number of ENVs positive for single colon cancer markers was found to be significantly higher in the plasma of CRC patients compared with healthy donors. The efficacy of detection depends on the method of ENV labelling. The diagnostic efficacy was estimated by ROC analysis (the AUC varied between 0.71 and 0.79). The multiplexed isolation of colon-derived ENVs using immune-beads decorated with antibodies against five markers allowed for a further increase in the diagnostic potency of the method (AUC = 0.82). Conclusions: ENVs derived from colon epithelium may serve as markers of differentiated CRC (adenocarcinomas). The composition of ligands used for capturing colon-derived ENVs and their method of labelling are critical for the efficacy of this proposed diagnostic approach

    Evaluation of Colon-Specific Plasma Nanovesicles as New Markers of Colorectal Cancer

    No full text
    Purpose: Developing new and efficient approaches for the early diagnosis of colorectal cancer (CRC) is an important issue. Circulating extracellular nanovesicles (ENVs) present a promising class of cancer markers. Cells of well-differentiated adenocarcinomas retain the molecular characteristics of colon epithelial cells, and the ENVs secreted by these cells may have colon-specific surface markers. We hypothesize that an increase in the number of ENVs carrying colon-specific markers could serve as a diagnostic criterion for colorectal cancer. Experimental design: Potential colon-specific markers were selected based on tissue-specific expression profile and cell surface membrane localization data. Plasma was collected from CRC patients (n = 48) and healthy donors (n = 50). The total population of ENVs was isolated with a two-phase polymer system. ENVs derived from colon epithelium cells were isolated using immune-beads with antibodies to colon-specific markers prior to labelling with antibodies against exosomal tetraspanins (CD63 and CD9) and quantification by flow cytometry. Results: The number of ENVs positive for single colon cancer markers was found to be significantly higher in the plasma of CRC patients compared with healthy donors. The efficacy of detection depends on the method of ENV labelling. The diagnostic efficacy was estimated by ROC analysis (the AUC varied between 0.71 and 0.79). The multiplexed isolation of colon-derived ENVs using immune-beads decorated with antibodies against five markers allowed for a further increase in the diagnostic potency of the method (AUC = 0.82). Conclusions: ENVs derived from colon epithelium may serve as markers of differentiated CRC (adenocarcinomas). The composition of ligands used for capturing colon-derived ENVs and their method of labelling are critical for the efficacy of this proposed diagnostic approach

    A New Approach for Prostate Cancer Diagnosis by miRNA Profiling of Prostate-Derived Plasma Small Extracellular Vesicles

    No full text
    Vesicular miRNA has emerged as a promising marker for various types of cancer, including prostate cancer (PC). In the advanced stage of PC, the cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant portion of circulating vesicles and may mediate a detectable change in the plasma vesicular miRNA profile. However, SEVs secreted by small tumor in the prostate gland constitute a tiny fraction of circulating vesicles and cause undetectable miRNA pattern changes. Thus, the isolation and miRNA profiling of a specific prostate-derived fraction of SEVs can improve the diagnostic potency of the methods based on vesicular miRNA analysis. Prostate-specific membrane antigen (PSMA) was selected as a marker of prostate-derived SEVs. Super-paramagnetic beads (SPMBs) were functionalized by PSMA-binding DNA aptamer (PSMA–Apt) via a click reaction. The efficacy of SPMB–PSMA–Apt complex formation and PSMA(+)SEVs capture were assayed by flow cytometry. miRNA was isolated from the total population of SEVs and PSMA(+)SEVs of PC patients (n = 55) and healthy donors (n = 30). Four PC-related miRNAs (miR-145, miR-451a, miR-143, and miR-221) were assayed by RT-PCR. The click chemistry allowed fixing DNA aptamers onto the surface of SPMB with an efficacy of up to 89.9%. The developed method more effectively isolates PSMA(+)SEVs than relevant antibody-based technology. The analysis of PC-related miRNA in the fraction of PSMA(+)SEVs was more sensitive and revealed distinct diagnostic potency (AUC: miR-145, 0.76; miR-221, 0.7; miR-451a, 0.65; and miR-141, 0.64) than analysis of the total SEV population. Thus, isolation of prostate-specific SEVs followed by analysis of vesicular miRNA might be a promising PC diagnosis method

    Formation and Evaluation of a Two-Phase Polymer System in Human Plasma as a Method for Extracellular Nanovesicle Isolation

    No full text
    The aim of the study was to explore the polyethylene glycol–dextran two-phase polymer system formed in human plasma to isolate the exosome-enriched fraction of plasma extracellular nanovesicles (ENVs). Systematic analysis was performed to determine the optimal combination of the polymer mixture parameters (molecular mass and concentration) that resulted in phase separation. The separated phases were analyzed by nanoparticle tracking analysis and Raman spectroscopy. The isolated vesicles were characterized by atomic force microscopy and dot blotting. In conclusion, the protein and microRNA contents of the isolated ENVs were assayed by flow cytometry and by reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR), respectively. The presented results revealed the applicability of a new method for plasma ENV isolation and further analysis with a diagnostic purpose
    corecore