37 research outputs found
The interplay between macronutrients and sleep: focus on circadian and homeostatic processes
Sleep disturbances are an emerging risk factor for metabolic diseases, for which the burden is particularly worrying worldwide. The importance of sleep for metabolic health is being increasingly recognized, and not only the amount of sleep plays an important role, but also its quality. In this review, we studied the evidence in the literature on macronutrients and their influence on sleep, focusing on the mechanisms that may lay behind this interaction. In particular, we focused on the effects of macronutrients on circadian and homeostatic processes of sleep in preclinical models, and reviewed the evidence of clinical studies in humans. Given the importance of sleep for health, and the role of circadian biology in healthy sleep, it is important to understand how macronutrients regulate circadian clocks and sleep homeostasis
Overweight and obese patients with nickel allergy have a worse metabolic profile compared to weight matched non-allergic individuals
A lack of balance between energy intake and expenditure due to overeating or reduced physical activity does not seem to explain entirely the obesity epidemic we are facing, and further factors are therefore being evaluated. Nickel (Ni) is a ubiquitous heavy metal implied in several health conditions. Regarding this, the European Food Safety Authority has recently released an alert on the possible deleterious effects of dietary Ni on human health given the current levels of Ni dietary intake in some countries. Pre-clinical studies have also suggested its role as an endocrine disruptor and have linked its exposure to energy metabolism and glucose homeostasis dysregulation. Ni allergy is common in the general population, but preliminary data suggest it being even more widespread among overweight patients.
OBJECTIVES:
The aim of this study has been to evaluate the presence of Ni allergy and its association with the metabolic and endocrine profile in overweight and obese individuals.
METHODS:
We have evaluated 1128 consecutive overweight and obese outpatients. 784 were suspected of being allergic to Ni and 666 were assessed for it. Presence of Ni allergy and correlation with body mass index (BMI), body composition, metabolic parameters and hormonal levels were evaluated.
RESULTS:
We report that Ni allergy is more frequent in presence of weight excess and is associated with worse metabolic parameters and impaired Growth Hormone secretion.
CONCLUSIONS:
We confirm that Ni allergy is more common in obese patients, and we report for the first time its association with worse metabolic parameters and impaired function of the GH-IGF1 axis in human subjects
Weight Loss and Sleep, Current Evidence in Animal Models and Humans
Sleep is a vital process essential for survival. The trend of reduction in the time dedicated to sleep has increased in industrialized countries, together with the dramatic increase in the prevalence of obesity and diabetes. Short sleep may increase the risk of obesity, diabetes and cardiovascular disease, and on the other hand, obesity is associated with sleep disorders, such as obstructive apnea disease, insomnia and excessive daytime sleepiness. Sleep and metabolic disorders are linked; therefore, identifying the physiological and molecular pathways involved in sleep regulation and metabolic homeostasis can play a major role in ameliorating the metabolic health of the individual. Approaches aimed at reducing body weight could provide benefits for both cardiometabolic risk and sleep quality, which indirectly, in turn, may determine an amelioration of the cardiometabolic phenotype of individuals. We revised the literature on weight loss and sleep, focusing on the mechanisms and the molecules that may subtend this relationship in humans as in animal models
Ketogenic Diet for Obese COVID-19 Patients: Is Respiratory Disease a Contraindication? A Narrative Review of the Literature on Ketogenic Diet and Respiratory Function
Morbid obese people are more likely to contract SARS-CoV-2 infection and its most severe complications, as need for mechanical ventilation. Ketogenic Diet (KD) is able to induce a fast weight loss preserving lean mass and is particularly interesting as a preventive measure in obese patients. Moreover, KD has anti-inflammatory and immune-modulating properties, which may help in preventing the cytokine storm in infected patients. Respiratory failure is actually considered a contraindication for VLCKD, a very-low calorie form of KD, but in the literature there are some data reporting beneficial effects on respiratory parameters from ketogenic and low-carbohydrate high-fat diets. KD may be helpful in reducing ventilatory requirements in respiratory patients, so it should be considered in specifically addressed clinical trials as an adjuvant therapy for obese patients infected with SARS-CoV-2
Nickel sensitivity is associated with GH-IGF1 axis impairment and pituitary abnormalities on MRI in overweight and obese subjects
Nickel (Ni) is a ubiquitous metal, the exposure of which is implied in the development of contact dermatitis (nickel allergic contact dermatitis (Ni-ACD)) and Systemic Ni Allergy Syndrome (SNAS), very common among overweight/obese patients. Preclinical studies have linked Ni exposure to abnormal production/release of Growth Hormone (GH), and we previously found an association between Ni-ACD/SNAS and GH-Insulin-like growth factor 1 (IGF1) axis dysregulation in obese individuals, altogether suggesting a role for this metal as a pituitary disruptor. We herein aimed to directly evaluate the pituitary gland in overweight/obese patients with signs/symptoms suggestive of Ni allergy, exploring the link with GH secretion; 859 subjects with overweight/obesity and suspected of Ni allergy underwent Ni patch tests. Among these, 106 were also suspected of GH deficiency (GHD) and underwent dynamic testing as well as magnetic resonance imaging for routine follow up of benign diseases or following GHD diagnosis. We report that subjects with Ni allergies show a greater GH-IGF1 axis impairment, a higher prevalence of Empty Sella (ES), a reduced pituitary volume and a higher normalized T2 pituitary intensity compared to nonallergic ones. We hypothesize that Ni may be detrimental to the pituitary gland, through increased inflammation, thus contributing to GH-IGF1 axis dysregulation
Differential activity and expression of human 5β-reductase (AKR1D1) splice variants
Steroid hormones, including glucocorticoids and androgens, exert a wide variety of effects in the body across almost all tissues. The steroid A-ring 5beta-reductase (AKR1D1) is expressed in human liver and testes, and three splice variants have been identified (AKR1D1-001, AKR1D1-002, AKR1D1-006). Amongst these, AKR1D1-002 is the best described; it modulates steroid hormone availability and catalyses an important step in bile acid biosynthesis. However, specific activity and expression of AKR1D1-001 and AKR1D1-006 are unknown. Expression of AKR1D1 variants were measured in human liver biopsies and hepatoma cell lines by qPCR. Their three-dimensional (3D) structures were predicted using in silico approaches. AKR1D1 variants were over-expressed in HEK293 cells, and successful overexpression confirmed by qPCR and western blotting. Cells were treated with either cortisol, dexamethasone, prednisolone, testosterone or androstenedione, and steroid hormone clearance was measured by mass spectrometry. Glucocorticoid and androgen receptor activation were determined by luciferase reporter assays. AKR1D1-002 and AKR1D1-001 are expressed in human liver, and only AKR1D1-006 is expressed in human testes. Following over-expression, AKR1D1-001 and AKR1D1-006 protein levels were lower than AKR1D1-002, but significantly increased following treatment with the proteasomal inhibitor, MG-132. AKR1D1-002 efficiently metabolised glucocorticoids and androgens and decreased receptor activation. AKR1D1-001 and AKR1D1-006 poorly metabolised dexamethasone, but neither protein metabolised cortisol, prednisolone, testosterone or androstenedione. We have demonstrated the differential expression and role of AKR1D1 variants in steroid hormone clearance and receptor activation in vitro. AKR1D1-002 is the predominant functional protein in steroidogenic and metabolic tissues. In addition, AKR1D1-001 and AKR1D1-006 may have a limited, steroid-specific role in the regulation of dexamethasone action
The Dynamics of Sensorimotor Cortical Oscillations during the Observation of Hand Movements: An EEG Study
Background
The observation of action done by others determines a desynchronization of the rhythms recorded from cortical central regions. Here, we examined whether the observation of different types of hand movements (target directed, non-target directed, cyclic and non-cyclic) elicits different EEG cortical temporal patterns.
Methodology
Video-clips of four types of hand movements were shown to right-handed healthy participants. Two were target directed (grasping and pointing) motor acts; two were non-target directed (supinating and clenching) movements. Grasping and supinating were performed once, while pointing and clenching twice (cyclic movements). High-density EEG was recorded and analyzed by means of wavelet transform, subdividing the time course in time bins of 200 ms. The observation of all presented movements produced a desynchronization of alpha and beta rhythms in central and parietal regions. The rhythms desynchronized as soon as the hand movement started, the nadir being reached around 700 ms after movement onset. At the end of the movement, a large power rebound occurred for all bands. Target and non-target directed movements produced an alpha band desynchronization in the central electrodes at the same time, but with a stronger desynchronization and a prolonged rebound for target directed motor acts. Most interestingly, there was a clear correlation between the velocity profile of the observed movements and beta band modulation.
Significance
Our data show that the observation of motor acts determines a modulation of cortical rhythm analogous to that occurring during motor act execution. In particular, the cortical motor system closely follows the velocity of the observed movements. This finding provides strong evidence for the presence in humans of a mechanism (mirror mechanism) mapping action observation on action execution motor programs
Protein Catabolism and the Dysregulation of Energy Intake-Related Hormones May Play a Major Role in the Worsening of Malnutrition in Hospitalized Cirrhotic Patients
Malnutrition in cirrhotic patients is extremely common and has a multifactorial aetiology, whose constitutive elements have not been completely elucidated yet. Protein depletion is particularly important and an imbalance of hormones regulating hunger and satiety may be an important additive factor. The diagnosis and treatment of malnutrition are extremely important since malnutrition is associated with higher complication rates and mortality. Our observational study aimed to study protein status and energy intake-related hormone levels in a cohort of hospitalized cirrhotic patients. We enrolled 50 hospitalized and clinically stable cirrhotic patients and assessed their nutritional status with anthropometric measurements and nitrogen balance. In a subgroup of 16 patients and 10 healthy controls, circulating ghrelin and leptin levels were studied. We observed that 60% of our patients were malnourished on the basis of the mid-arm muscle circumference values; the recorded daily protein intake was tendentially insufficient (mean protein intake of 0.7 ± 0.5 g protein/kg vs. recommended intake of 1.2–1.5 g of protein/kg/die). Cirrhotic patients had lower circulating levels of both ghrelin and leptin compared to healthy controls. In conclusion, hospitalized cirrhotic patients face a catabolic state and an imbalance in hormones regulating food intake and satiety, and these elements may play a major role in the genesis and/or the worsening of malnutrition