16 research outputs found

    USING RANDOMIZED ALGORITHMS FOR SOLVING DISCRETE ILL-POSED PROBLEMS

    No full text
    IJ ITA is official publisher of the scientific papers of the members of the ITHEA ® International Scientific Society IJ ITA welcomes scientific papers connected with any information theory or its application. IJ ITA rules for preparing the manuscripts are compulsory. The rules for the papers for IJ ITA as well as the subscription fees are given on www.ithea.org . The camera-ready copy of the paper should be received by http://ij.ithea.org. Responsibility for papers published in IJ ITA belongs to authors

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0c¯¯¯¯¯¯) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Measurement of Ω0c baryon production and branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) in pp collisions at √s = 13 TeV

    No full text
    The inclusive production of the charm-strange baryon Ω0c is measured for the first time via its semileptonic decay into Ω−e+νe at midrapidity (|y| < 0.8) in proton–proton (pp) collisions at the centre-of-mass energy √s = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) is measured to be 1.12 ± 0.22 (stat.) ± 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    K∗(892)± resonance production in Pb−Pb collisions at √sNN = 5.02 TeV

    No full text
    The production of K∗(892)± meson resonance is measured at midrapidity (|y|8 GeV/c, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium

    Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ0 photoproduction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced ρ0 mesons is presented. The ρ0 mesons are reconstructed through their decay into a pion pair. The measured anisotropy corresponds to the amplitude of the cos(2ϕ) modulation, where ϕ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb−Pb collisions at a center-of-mass energy of sNN−−−√ = 5.02 TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the cos(2ϕ) modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations, which describe the measurement, explain the cos(2ϕ) anisotropy as the result of a quantum interference effect at the femtometer scale that arises from the ambiguity as to which of the nuclei is the source of the photon in the interaction

    Investigating the nature of the K∗0(700) state with π±K0S correlations at the LHC

    No full text
    The first measurements of femtoscopic correlations with the particle pair combinations π±K0S in pp collisions at s√=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K∗0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±K0S pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K∗0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K∗0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K∗0(700) resonance

    Charm fragmentation fractions and cc cross section in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The total charm-quark production cross section per unit of rapidity dσ(cc)/dy, and the fragmentation fractions of charm quarks to different charm-hadron species f(c → hc), are measured for the first time in p–Pb collisions at √sNN = 5.02 TeV at midrapidity (−0.96 < y < 0.04 in the centre-ofmass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: D0, D+,D+s, and J/ψ mesons, and Λ+cand Ξ0cbaryons. The resulting cross section is dσ(cc)/dy = 219.6±6.3 (stat.)+10.5−11.8(syst.)+7.6−2.9(extr.)±5.4 (BR)±4.6 (lumi.)±19.5 (rapidity shape) +15.0 (Ω0c) mb, which is consistent with a binary scaling of pQCD calculations from pp ollisions. The measured fragmentation fractions are compatible with those measured in pp collisions at √s = 5.02 and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with e+e − and e−p collisions. The pT-integrated nuclear modification factor of charm quarks, RpPb(cc) = 0.91±0.04 (stat.) +0.08 −0.09 (syst.) +0.04 −0.03 (extr.)±0.03 (lumi.), is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions

    Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

    No full text
    A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson K0S and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (``trigger" particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s√=5.02 TeV and s√=13 TeV using the ALICE detector at the LHC. The per-trigger yields of K0S and Ξ± are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/K0S yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ± with respect to K0S is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The K0S and Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely PYTHIA 8.2 with the Monash tune, PYTHIA 8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of K0S and Ξ±

    K^{*}(892)±^{\pm} resonance production in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe production of K^*(892)±^\pm meson resonance is measured at midrapidity (y8|y|8 GeV/cc, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium
    corecore