1,077 research outputs found

    Ab Initio Spectroscopic Investigation of Pharmacologically Relevant Chiral Molecules: The Cases of Avibactam, Cephems, and Idelalisib as Benchmarks for Antibiotics and Anticancer Drugs

    Get PDF
    Abstract: The ability to accurately measure or predict several physicochemical properties of molecules which play a role as active substances in drugs can be of strategic importance for pharmacological applications, in addition to its possible interest in fundamental research. Chirality is a relevant feature in the characterization of drug molecules: enantiomers can show different pharmacological activity and adverse effects. The ability to separate stereoisomers and to assign their absolute configuration can thus be crucial. Circular dichroism (CD) spectra are a useful tool to distinguish between enantiomers. In this work we apply an in-house developed code, based on an efficient DFT approach for circular dichroism, to fully characterize the molecular optical properties in the case of few selected fundamental molecules for current medical and pharmaceutical research, namely avibactam, as representative of non b-lactam inhibitors, two cephems (cefepime and cefoxitin), as examples of b-lactam antibiotics, and idelalisib, as a recent relevant anticancer active substance to treat major leukemias. For the above molecules, in addition to their optical absorption spectra, we calculate their CD spectra within state-of-the-art computational techniques. We then investigate both the conformational and chemical sensitivity of absorption and CD spectra for the chosen molecules. The outcomes of the present research could be of fundamental importance to gain additional information on molecules involved in therapeutic protocols for severe diseases or in drug design

    An Analysis of Respiration with the Smart Sensor SENSIRIB in Patients Undergoing Thoracic Surgery

    Get PDF
    : The paper examines the problem of respiration monitoring with easily wearable instrumentation by using a smart device that is properly designed and implemented with small and light components. The practical implementation is presented both in practical aspects and from experimental results by following a properly defined method with a medical-like protocol and specific procedure of testing. The results of a statistically significant campaign of experimental tests are reported with the characteristic data from the angles and acceleration components of a sensed rib both to validate the smart device and the procedure for respiration monitoring

    Beyond Glycemic Control in Diabetes Mellitus: Effects of Incretin-Based Therapies on Bone Metabolism

    Get PDF
    Diabetes mellitus (DM) and osteoporosis (OP) are common disorders with a significant health burden, and an increase in fracture risk has been described both in type 1 (T1DM) and in type 2 (T2DM) diabetes. The pathogenic mechanisms of impaired skeletal strength in diabetes remain to be clarified in details and they are only in part reflected by a variation in bone mineral density. In T2DM, the occurrence of low bone turnover together with a decreased osteoblast activity and compromised bone quality has been shown. Of note, some antidiabetic drugs (e.g., thiazolidinediones, insulin) may deeply affect bone metabolism. In addition, the recently introduced class of incretin-based drugs (i.e., GLP-1 receptor agonists and DPP-4 inhibitors) is expected to exert potentially beneficial effects on bone health, possibly due to a bone anabolic activity of GLP-1, that can be either direct or indirect through the involvement of thyroid C cells. Here we will review the established as well as the putative effects of incretin hormones and of incretin-based drugs on bone metabolism, both in preclinical models and in man, taking into account that such therapeutic strategy may be effective not only to achieve a good glycemic control, but also to improve bone health in diabetic patients

    Circulating microRNA (miRNA) expression profiling in plasma of patients with gestational diabetes mellitus reveals upregulation of miRNA miR-330-3p

    Get PDF
    Gestational diabetes mellitus (GDM) is characterized by insulin resistance accompanied by low/absent beta-cell compensatory adaptation to the increased insulin demand. Although the molecular mechanisms and factors acting on beta-cell compensatory response during pregnancy have been partially elucidated and reported, those inducing an impaired beta-cell compensation and function, thus evolving in GDM, have yet to be fully addressed. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs, which negatively modulate gene expression through their sequence-specific binding to 3'UTR of mRNA target. They have been described as potent modulators of cell survival and proliferation and, furthermore, as orchestrating molecules of beta-cell compensatory response and function in diabetes. Moreover, it has been reported that miRNAs can be actively secreted by cells and found in many biological fluids (e.g., serum/plasma), thus representing both optimal candidate disease biomarkers and mediators of tissues crosstalk(s). Here, we analyzed the expression profiles of circulating miRNAs in plasma samples obtained from n = 21 GDM patients and from n = 10 non-diabetic control pregnant women (24-33 weeks of gestation) using TaqMan array microfluidics cards followed by RT-real-time PCR single assay validation. The results highlighted the upregulation of miR-330-3p in plasma of GDM vs non-diabetics. Furthermore, the analysis of miR-330-3p expression levels revealed a bimodally distributed GDM patients group characterized by high or low circulating miR-330 expression and identified as GDM-miR-330highand GDM-miR-330low. Interestingly, GDM-miR-330highsubgroup retained lower levels of insulinemia, inversely correlated to miR-330-3p expression levels, and a significant higher rate of primary cesarean sections. Finally, miR-330-3p target genes analysis revealed major modulators of beta-cell proliferation and of insulin secretion, such as the experimentally validated genes E2F1 and CDC42 as well as AGT2R2, a gene involved in the differentiation of mature beta-cells. In conclusion, we demonstrated that plasma miR-330-3p could be of help in identifying GDM patients with potential worse gestational diabetes outcome; in GDM, miR-330-3p may directly be transferred from plasma to beta-cells thus modulating key target genes involved in proliferation, differentiation, and insulin secretion

    Structural-Functional Characterization and Physiological Significance of Ferredoxin-NADP+ Reductase from Xanthomonas axonopodis pv. citri

    Get PDF
    Xanthomonas axonopodis pv. citri is a phytopathogen bacterium that causes severe citrus canker disease. Similar to other phytopathogens, after infection by this bacterium, plants trigger a defense mechanism that produces reactive oxygen species. Ferredoxin-NADP+ reductases (FNRs) are redox flavoenzymes that participate in several metabolic functions, including the response to reactive oxygen species. Xanthomonas axonopodis pv. citri has a gene (fpr) that encodes for a FNR (Xac-FNR) that belongs to the subclass I bacterial FNRs. The aim of this work was to search for the physiological role of this enzyme and to characterize its structural and functional properties. The functionality of Xac-FNR was tested by cross-complementation of a FNR knockout Escherichia coli strain, which exhibit high susceptibility to agents that produce an abnormal accumulation of •O2-. Xac-FNR was able to substitute for the FNR in E. coli in its antioxidant role. The expression of fpr in X. axonopodis pv. citri was assessed using semiquantitative RT-PCR and Western blot analysis. A 2.2-fold induction was observed in the presence of the superoxide-generating agents methyl viologen and 2,3-dimethoxy-1,4-naphthoquinone. Structural and functional studies showed that Xac-FNR displayed different functional features from other subclass I bacterial FNRs. Our analyses suggest that these differences may be due to the unusual carboxy-terminal region. We propose a further classification of subclass I bacterial FNRs, which is useful to determine the nature of their ferredoxin redox partners. Using sequence analysis, we identified a ferredoxin (XAC1762) as a potential substrate of Xac-FNR. The purified ferredoxin protein displayed the typical broad UV-visible spectrum of [4Fe-4S] clusters and was able to function as substrate of Xac-FNR in the cytochrome c reductase activity. Our results suggest that Xac-FNR is involved in the oxidative stress response of Xanthomonas axonopodis pv. citri and performs its biological function most likely through the interaction with ferredoxin XAC1762

    Transforming growth factor β 869C/T and interleukin 6 -174G/C polymorphisms relate to the severity and progression of bone-erosive damage detected by ultrasound in rheumatoid arthritis

    Get PDF
    Introduction: Single nucleotide polymorphisms (SNPs) of transforming growth factor β (TGF-β) and IL-6 genes (respectively, 869C/T and -174G/C) have been associated with radiographic severity of bone-erosive damage in patients with rheumatoid arthritis (RA). Musculoskeletal ultrasound (US) is more sensitive than radiography in detecting bone erosion. We analyzed the association between TGF-β 869C/T and IL-6 -174G/C SNPs and bone-erosive damage, evaluated by US, in a cohort of patients with severely active RA.Methods: Seventy-seven patients were enrolled before beginning anti-TNF treatment. Disease activity was measured using the disease activity score in 28 joints, and the clinical response was evaluated according to the European League Against Rheumatism response criteria. Rheumatoid factor (RF) and anticitrullinated protein/peptide antibodies (ACPAs) were detected. The 869C/T TGF-β and -174G/C IL-6 SNPs were analyzed by PCR amplification. US was performed to assess the bone surfaces of metacarpophalengeal (MCP), proximal interphalangeal (PIP) and metatarsophalangeal (MTP) joints by obtaining multiplanar scans. According to the number of erosions per joint, a semiquantitative score ranging from 0 to 3 was calculated in each anatomical site to obtain a MCP total erosion score (TES), a PIP TES and a MTP TES, all ranging from 0 to 30, and a global patient TES calculated as the sum of these scores (range, 0 to 90).Results: Patients carrying the TGF-β 869TT genotype showed a statistically significant lower MTP TES than those with the CC or CT genotype (mean MTP TES ± standard deviation for 869TT 6.3 ± 5.7 vs. 869CC/CT 11.7 ± 7.8; P = 0.011). Interestingly, patients with the TT genotype showed dichotomous behavior that was dependent on autoantibody status. In the presence of ACPAs and/or RF, the TT genotype was associated with lower erosion scores at all anatomical sites compared with the CC and CT genotypes. Conversely, the same 869TT patients showed higher erosion scores in the absence of ACPAs or RF.Conclusions: In RA patients, TGF-β 869C/T SNPs could influence the bone-erosive damage as evaluated by US. The serological autoantibody status (ACPAs and RF) can modulate this interaction. © 2011 Ceccarelli et al.; licensee BioMed Central Ltd

    "Stockpile" of slight transcriptomic changes determines the indirect genotoxicity of low-dose BPA in thyroid cells

    Get PDF
    Epidemiological and experimental data highlighted the thyroid-disrupting activity of bisphenol A (BPA). Although pivotal to identify the mechanisms of toxicity, direct low-dose BPA effects on thyrocytes have not been assessed. Here, we report the results of microarray experiments revealing that the transcriptome reacts dynamically to low-dose BPA exposure, adapting the changes in gene expression to the exposure duration. The response involves many genes, enriching specific pathways and biological functions mainly cell death/proliferation or DNA repair. Their expression is only slightly altered but, since they enrich specific pathways, this results in major effects as shown here for transcripts involved in the DNA repair pathway. Indeed, even though no phenotypic changes are induced by the treatment, we show that the exposure to BPA impairs the cell response to further stressors. We experimentally verify that prolonged exposure to low doses of BPA results in a delayed response to UV-C-induced DNA damage, due to impairment of p21-Tp53 axis, with the BPA-treated cells more prone to cell death and DNA damage accumulation. The present findings shed light on a possible mechanism by which BPA, not able to directly cause genetic damage at environmental dose, may exert an indirect genotoxic activity

    ALS2-Related Motor Neuron Diseases: From Symptoms to Molecules

    Get PDF
    Infantile-onset Ascending Hereditary Spastic Paralysis, Juvenile Primary Lateral Sclerosis and Juvenile Amyotrophic Lateral Sclerosis are all motor neuron diseases related to mutations on the ALS2 gene, encoding for a 1657 amino acids protein named Alsin. This ~185 kDa multi-domain protein is ubiquitously expressed in various human tissues, mostly in the brain and the spinal cord. Several investigations have indicated how mutations within Alsin’s structured domains may be responsible for the alteration of Alsin’s native oligomerization state or Alsin’s propensity to interact with protein partners. In this review paper, we propose a description of differences and similarities characterizing the above-mentioned ALS2-related rare neurodegenerative disorders, pointing attention to the effects of ALS2 mutation from molecule to organ and at the system level. Known cases were collected through a literature review and rationalized to deeply elucidate the neurodegenerative clinical outcomes as consequences of ALS2 mutation
    • …
    corecore