58 research outputs found

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Optimization and qualification of an assay that demonstrates that a FimH vaccine induces functional antibody responses in women with histories of urinary tract infections

    No full text
    Recurrent urinary tract infections (rUTI) are a serious disease associated with morbidities and mortality. Resistance to the standard of care antibiotics is now widespread because of the continued use of antibiotics among people who suffer from rUTI. We are therefore developing a vaccine to prevent recurrences among patients with rUTI. The antigen of the vaccine is FimH, a bacterial adhesin protein, and the vaccine is adjuvanted with a TLR-4 agonist. In a Phase 1 clinical study evaluating the vaccine, immunized individuals produced FimH-binding antibodies. Here we describe the optimization, qualification, and use of an assay to assess the functionality of these anti-FimH antibodies. The suitability of the assay for its intended purpose was demonstrated by selectivity, specificity, sensitivity, and intra-assay and inter-assay precision. The acceptance criteria were achieved for all parameters including intra-assay precision with ≤10% relative standard deviations and inter-assay precision with ≤25% relative standard deviations. The results presented herein suggest this functional assay will be important for supporting the vaccine’s efficacy in future human studies. Furthermore and of great significance, these results prove that vaccine-induced functional antibodies can be elicited in rUTI patients against an essential virulence factor, FimH

    Optimization and Qualification of an Assay that Demonstrates that a FimH Vaccine Induces Functional Antibody Responses in Women with Histories of Urinary Tract Infections

    No full text
    Recurrent urinary tract infections (rUTI) are a serious disease associated with morbidities and mortality. Resistance to the standard of care antibiotics is now widespread because of the continued use of antibiotics among people who suffer from rUTI. We are therefore developing a vaccine to prevent recurrences among patients with rUTI. The antigen of the vaccine is FimH, a bacterial adhesin protein, and the vaccine is adjuvanted with a TLR-4 agonist. In a Phase 1 clinical study evaluating the vaccine, immunized individuals produced FimH-binding antibodies. Here we describe the optimization, qualification, and use of an assay to assess the functionality of these anti-FimH antibodies. The suitability of the assay for its intended purpose was demonstrated by selectivity, specificity, sensitivity, and intra-assay and inter-assay precision. The acceptance criteria were achieved for all parameters including intra-assay precision with ≤10% relative standard deviations and inter-assay precision with ≤25% relative standard deviations. The results presented herein suggest this functional assay will be important for supporting the vaccine’s efficacy in future human studies. Furthermore and of great significance, these results prove that vaccine-induced functional antibodies can be elicited in rUTI patients against an essential virulence factor, FimH

    Altered Right Ventricular Mechanical Properties Are Afterload Dependent in a Rodent Model of Bronchopulmonary Dysplasia

    No full text
    Infants born premature are at increased risk for development of bronchopulmonary dysplasia (BPD), pulmonary hypertension (PH), and ultimately right ventricular (RV) dysfunction, which together carry a high risk of neonatal mortality. However, the role alveolar simplification and abnormal pulmonary microvascular development in BPD affects RV contractile properties is unknown. We used a rat model of BPD to examine the effect of hyperoxia-induced PH on RV contractile properties. We measured in vivo RV pressure as well as passive force, maximum Ca2+ activated force, calcium sensitivity of force (pCa50) and rate of force redevelopment (ktr) in RV skinned trabeculae isolated from hearts of 21-and 35-day old rats pre-exposed to 21% oxygen (normoxia) or 85% oxygen (hyperoxia) for 14 days after birth. Systolic and diastolic RV pressure were significantly higher at day 21 in hyperoxia exposed rats compared to normoxia control rats, but normalized by 35 days of age. Passive force, maximum Ca2+ activated force, and calcium sensitivity of force were elevated and cross-bridge cycling kinetics depressed in 21-day old hyperoxic trabeculae, whereas no differences between normoxic and hyperoxic trabeculae were seen at 35 days. Myofibrillar protein analysis revealed that 21-day old hyperoxic trabeculae had increased levels of beta-myosin heavy chain (β-MHC), atrial myosin light chain 1 (aMLC1; often referred to as essential light chain), and slow skeletal troponin I (ssTnI) compared to age matched normoxic trabeculae. On the other hand, 35-day old normoxic and hyperoxic trabeculae expressed similar level of α- and β-MHC, ventricular MLC1 and predominantly cTnI. These results suggest that neonatal exposure to hyperoxia increases RV afterload and affect both the steady state and dynamic contractile properties of the RV, likely as a result of hyperoxia-induced expression of β-MHC, delayed transition of slow skeletal TnI to cardiac TnI, and expression of atrial MLC1. These hyperoxia-induced changes in contractile properties are reversible and accompany the resolution of PH with further developmental age, underscoring the importance of reducing RV afterload to allow for normalization of RV function in both animal models and humans with BPD

    Differential Gene Expression for Investigation of Escherichia coli Biofilm Inhibition by Plant Extract Ursolic Acid

    No full text
    After 13,000 samples of compounds purified from plants were screened, a new biofilm inhibitor, ursolic acid, has been discovered and identified. Using both 96-well microtiter plates and a continuous flow chamber with COMSTAT analysis, 10 μg of ursolic acid/ml inhibited Escherichia coli biofilm formation 6- to 20-fold when added upon inoculation and when added to a 24-h biofilm; however, ursolic acid was not toxic to E. coli, Pseudomonas aeruginosa, Vibrio harveyi, and hepatocytes. Similarly, 10 μg of ursolic acid/ml inhibited biofilm formation by >87% for P. aeruginosa in both complex and minimal medium and by 57% for V. harveyi in minimal medium. To investigate the mechanism of this nontoxic inhibition on a global genetic basis, DNA microarrays were used to study the gene expression profiles of E. coli K-12 grown with or without ursolic acid. Ursolic acid at 10 and 30 μg/ml induced significantly (P < 0.05) 32 and 61 genes, respectively, and 19 genes were consistently induced. The consistently induced genes have functions for chemotaxis and mobility (cheA, tap, tar, and motAB), heat shock response (hslSTV and mopAB), and unknown functions (such as b1566 and yrfHI). There were 31 and 17 genes repressed by 10 and 30 μg of ursolic acid/ml, respectively, and 12 genes were consistently repressed that have functions in cysteine synthesis (cysK) and sulfur metabolism (cysD), as well as unknown functions (such as hdeAB and yhaDFG). Ursolic acid inhibited biofilms without interfering with quorum sensing, as shown with the V. harveyi AI-1 and AI-2 reporter systems. As predicted by the differential gene expression, deleting motAB counteracts ursolic acid inhibition (the paralyzed cells no longer become too motile). Based on the differential gene expression, it was also discovered that sulfur metabolism (through cysB) affects biofilm formation (in the absence of ursolic acid)

    Asiatic Acid and Corosolic Acid Enhance the Susceptibility of Pseudomonas aeruginosa Biofilms to Tobramycin

    No full text
    Asiatic acid and corosolic acid are two natural products identified as biofilm inhibitors in a biofilm inhibition assay. We evaluated the activities of these two compounds on Pseudomonas aeruginosa biofilms grown in rotating disk reactors (RDRs) in combination with tobramycin and ciprofloxacin. To determine the ruggedness of our systems, the antibiotic susceptibilities of these biofilms were assessed with tobramycin and ciprofloxacin. The biofilm bacteria produced in the RDR were shown to display remarkable tolerance to 10 μg/ml of ciprofloxacin, thus mimicking the tolerance observed in recalcitrant bacterial infections. These studies further demonstrate that a nonmucoid strain of P. aeruginosa can form a biofilm that tolerates ciprofloxacin at clinically relevant concentrations. Neither asiatic acid nor corosolic acid reduced the viable cell density of P. aeruginosa biofilms. However, both compounds increased the susceptibility of biofilm bacteria to subsequent treatment with tobramycin, suggesting asiatic acid and corosolic acid to be compounds that potentiate the activity of antibiotics. A similar statistical interaction was observed between ciprofloxacin and subsequent treatment with tobramycin

    Digging Deep for New Compounds from the Compass Plant, Silphium laciniatum

    No full text
    The compass plant, Silphium laciniatum, is an iconic perennial plant of the North American tallgrass prairie. The plants of the tallgrass prairie historically have been subjected to a number of biological and environmental stresses. Among the adaptations developed by <i>S. laciniatum</i> is a large deep taproot. An investigation of the secondary metabolites found in the root of a <i>S. laciniatum</i> specimen has led to the identification of 15 new terpenoids (<b>3</b>–<b>8</b>, <b>10</b>–<b>17</b>, and <b>22</b>), which were screened for cytotoxic activity in the NCI-H460 human large-cell lung carcinoma cell line
    • …
    corecore