126 research outputs found

    Cord blood insulinoma-associated protein 2 autoantibodies are associated with increased risk of type 1 diabetes in the population-based Diabetes Prediction in Skane study

    Get PDF
    Aims/hypothesis The aim of this study was to examine the effect of cord blood autoantibodies on the risk for type 1 diabetes in children followed prospectively from birth. Methods The Diabetes Prediction in Skane (DiPiS) study consists of 35,853 children from the general population born during 2000-2004. Samples were collected at birth and analysed for HLA genotypes and autoantibodies to glutamate decarboxylase 65 (GAD65), insulin and insulinoma-associated protein 2 (IA-2). After adjusting for HLA, sex, maternal age and parental type 1 diabetes, independent associations with risk of diabetes were assessed using multivariate Cox proportional hazards models. Results In total, 151 children (0.4%) had developed type 1 diabetes by the end of 2013 at a median age of 5.8 years (0.8-12.2 years). In the multivariate analysis, the presence of IA-2 autoantibodies (IA-2A) in cord blood (HR 6.88, 95% CI 1.46,32.4; p = 0.003), but not maternal diabetes (HR 1.38, 95% CI 0.24,7.84; p = 0.71), was associated with risk of developing type 1 diabetes. No increased risk could be seen for the presence of autoantibodies to GAD65 or insulin. Conclusions/interpretation Our study indicates that the presence of cord blood IA-2A superimposes maternal diabetes and other cord blood islet autoantibodies as a predictor of type 1 diabetes development in the child. These findings may be of significance for future screening and study protocols on type 1 diabetes prediction

    Controversy in statistical analysis of functional magnetic resonance imaging data

    Get PDF
    To test the validity of statistical methods for fMRI data analysis, Eklund et al. (1) used, for the first time, large-scale experimental data rather than simulated data. Using resting-state fMRI measurements to represent a null hypothesis of no task-induced activation, the authors compare familywise error rates for voxel-based and cluster-based inferences for both parametric and nonparametric methods. Eklund et al.’s study used three fMRI statistical analysis packages. They found that, for a target familywise error rate of 5%, the parametric methods gave invalid cluster-based inferences and conservative voxel-based inferences

    Factors Associated with Decline of C-peptide in a Cohort of Young Children Diagnosed with Type 1 Diabetes

    Get PDF
    Context: Understanding factors involved in the rate of C-peptide decline is needed to tailor therapies for type 1 diabetes (T1D).Objective: Evaluate factors associated with rate of C-peptide decline after T1D diagnosis in young children.Design: Observational study.Setting: Academic centers.Participants: 57 participants in The Environmental Determinants of Diabetes in the Young (TEDDY) enrolled at 3 months of age and followed until T1D and 56 age-matched children diagnosed with T1D in the community.Intervention: A mixed meal tolerance test was used to measure the area under the curve (AUC) C-peptide at 1, 3, 6, 12 and 24 months post-diagnosis.Outcome: Factors associated with rate of C-peptide decline during the first 2 years post-diagnosis were evaluated using mixed effects models adjusting for age at diagnosis and baseline C-peptide.Results: Adjusted slopes of AUC C-peptide decline did not differ between TEDDY subjects and community controls (p=0.21), although the former had higher C-peptide baseline levels. In univariate analyses combining both groups (n=113), younger age, higher weight and BMI z-scores, female sex, increased number of islet autoantibodies, and IA-2A or ZnT8A positivity at baseline were associated with higher rate of C-peptide loss. Younger age, female sex and higher weight z-score remained significant in multivariate analysis (all pConclusion: Younger age at diagnosis, female sex, higher weight z-score, and HbA1c were associated with higher rate of C-peptide decline after T1D diagnosis in young children.</p

    Beta cell function in participants with single or multiple islet autoantibodies at baseline in the TEDDY Family Prevention Study: TEFA

    Get PDF
    AimThe aim of the present study was to assess beta cell function based on an oral glucose tolerance test (OGTT) in participants with single islet autoantibody or an intravenous glucose tolerance test (IvGTT) in participants with multiple islet autoantibodies.Materials and methodsHealthy participants in Sweden and Finland, between 2 and 49.99 years of age previously identified as positive for a single (n = 30) autoantibody to either insulin, glutamic acid decarboxylase, islet antigen-2, zinc transporter 8 or islet cell antibodies or multiple autoantibodies (n = 46), were included. Participants positive for a single autoantibody underwent a 6-point OGTT while participants positive for multiple autoantibodies underwent an IvGTT. Glucose, insulin and C-peptide were measured from OGTT and IvGTT samples.ResultsAll participants positive for a single autoantibody had a normal glucose tolerance test with 120 minutes glucose below 7.70 mmol/L and HbA1c values within the normal range (ConclusionParticipants positive for a single autoantibody appeared to have a normal beta cell function. Participants positive for three or more autoantibodies had a lower FPIR as compared to participants with two autoantibodies, supporting the view that their beta cell function had deteriorated.</p

    A method for reporting and classifying acute infectious diseases in a prospective study of young children : TEDDY

    Get PDF
    M. Knip työryhmän TEDDY Study Grp jäsen.Background: Early childhood environmental exposures, possibly infections, may be responsible for triggering islet autoimmunity and progression to type 1 diabetes (T1D). The Environmental Determinants of Diabetes in the Young (TEDDY) follows children with increased HLA-related genetic risk for future T1D. TEDDY asks parents to prospectively record the child's infections using a diary book. The present paper shows how these large amounts of partially structured data were reduced into quantitative data-sets and further categorized into system-specific infectious disease episodes. The numbers and frequencies of acute infections and infectious episodes are shown. Methods: Study subjects (n = 3463) included children who had attended study visits every three months from age 3 months to 4 years, without missing two or more consecutive visits during the follow-up. Parents recorded illnesses prospectively in a TEDDY Book at home. The data were entered into the study database during study visits using ICD-10 codes by a research nurse. TEDDY investigators grouped ICD-10 codes and fever reports into infectious disease entities and further arranged them into four main categories of infectious episodes: respiratory, gastrointestinal, other, and unknown febrile episodes. Incidence rate of infections was modeled as function of gender, HLA-DQ genetic risk group and study center using the Poisson regression. Results: A total of 113,884 ICD-10 code reports for infectious diseases recorded in the database were reduced to 71,578 infectious episodes, including 74.0% respiratory, 13.1% gastrointestinal, 5.7% other infectious episodes and 7.2% febrile episodes. Respiratory and gastrointestinal infectious episodes were more frequent during winter. Infectious episode rates peaked at 6 months and began declining after 18 months of age. The overall infectious episode rate was 5.2 episodes per person-year and varied significantly by country of residence, sex and HLA genotype. Conclusions: The data reduction and categorization process developed by TEDDY enables analysis of single infectious agents as well as larger arrays of infectious agents or clinical disease entities. The preliminary descriptive analyses of the incidence of infections among TEDDY participants younger than 4 years fits well with general knowledge of infectious disease epidemiology. This protocol can be used as a template in forthcoming time-dependent TEDDY analyses and in other epidemiological studies.Peer reviewe

    HbA1c as a time predictive biomarker for an additional islet autoantibody and type 1 diabetes in seroconverted TEDDY children

    Get PDF
    Objective Increased level of glycated hemoglobin (HbA1c) is associated with type 1 diabetes onset that in turn is preceded by one to several autoantibodies against the pancreatic islet beta cell autoantigens; insulin (IA), glutamic acid decarboxylase (GAD), islet antigen-2 (IA-2) and zinc transporter 8 (ZnT8). The risk for type 1 diabetes diagnosis increases by autoantibody number. Biomarkers predicting the development of a second or a subsequent autoantibody and type 1 diabetes are needed to predict disease stages and improve secondary prevention trials. This study aimed to investigate whether HbA1c possibly predicts the progression from first to a subsequent autoantibody or type 1 diabetes in healthy children participating in the Environmental Determinants of Diabetes in the Young (TEDDY) study. Research Design and Methods A joint model was designed to assess the association of longitudinal HbA1c levels with the development of first (insulin or GAD autoantibodies) to a second, second to third, third to fourth autoantibody or type 1 diabetes in healthy children prospectively followed from birth until 15 years of age. Results It was found that increased levels of HbA1c were associated with a higher risk of type 1 diabetes (HR 1.82, 95% CI [1.57-2.10], p Conclusion In conclusion, increased HbA1c is a reliable time predictive marker for type 1 diabetes onset. The increased rate of increase of HbA1c from first to third autoantibody and the decrease in HbA1c predicting the development of IA-2A are novel findings proving the link between HbA1c and the appearance of autoantibodies.</p

    Decline in Titers of Anti-Idiotypic Antibodies Specific to Autoantibodies to GAD65 (GAD65Ab) Precedes Development of GAD65Ab and Type 1 Diabetes.

    Get PDF
    The humoral Idiotypic Network consisting of antibodies and their anti-idiotypic antibodies (anti-Id) can be temporarily upset by antigen exposure. In the healthy immune response the original equilibrium is eventually restored through counter-regulatory mechanisms. In certain autoimmune diseases however, autoantibody levels exceed those of their respective anti-Id, indicating a permanent disturbance in the respective humoral Idiotypic Network. We investigated anti-Id directed to a major Type 1 diabetes (T1D)-associated autoantibody (GAD65Ab) in two independent cohorts during progression to disease. Samples taken from participants of the Natural History Study showed significantly lower anti-Id levels in individuals that later progressed to T1D compared to non-progressors (anti-Id antibody index of 0.06 vs. 0.08, respectively, p = 0.02). We also observed a significant inverse correlation between anti-Id levels and age at sampling, but only in progressors (p = 0.014). Finally, anti-Id levels in progressors showed a significant decline during progression as compared to longitudinal anti-Id levels in non-progressors (median rate of change: -0.0004 vs. +0.0004, respectively, p = 0.003), suggesting a loss of anti-Id during progression. Our analysis of the Diabetes Prediction in Skåne cohort showed that early in life (age 2) individuals at risk have anti-Id levels indistinguishable from those in healthy controls, indicating that low anti-Id levels are not an innate characteristic of the immune response in individuals at risk. Notably, anti-Id levels declined significantly in individuals that later developed GAD65Ab suggesting that the decline in anti-Id levels precedes the emergence of GAD65Ab (median rate of change: -0.005) compared to matched controls (median rate of change: +0.001) (p = 0.0016). We conclude that while anti-Id are present early in life, their levels decrease prior to the appearance of GAD65Ab and to the development of T1D

    Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes

    Get PDF
    BACKGROUND. Neutrophils and their inflammatory mediators are key pathogenic components in multiple autoimmune diseases, while their role in human type 1 diabetes (T1D), a disease that progresses sequentially through identifiable stages prior to the clinical onset, is not well understood. We previously reported that the number of circulating neutrophils is reduced in patients with T1D and in presymptomatic at-risk subjects. The aim of the present work was to identify possible changes in circulating and pancreas-residing neutrophils throughout the disease course to better elucidate neutrophil involvement in human T1D. METHODS. Data collected from 389 subjects at risk of developing T1D, and enrolled in 4 distinct studies performed by TrialNet, were analyzed with comprehensive statistical approaches to determine whether the number of circulating neutrophils correlates with pancreas function. To obtain a broad analysis of pancreas-infiltrating neutrophils throughout all disease stages, pancreas sections collected worldwide from 4 different cohorts (i.e., nPOD, DiViD, Siena, and Exeter) were analyzed by immunohistochemistry and immunofluorescence. Finally, circulating neutrophils were purified from unrelated nondiabetic subjects and donors at various T1D stages and their transcriptomic signature was determined by RNA sequencing. RESULTS. Here, we show that the decline in β cell function is greatest in individuals with the lowest peripheral neutrophil numbers. Neutrophils infiltrate the pancreas prior to the onset of symptoms and they continue to do so as the disease progresses. Of interest, a fraction of these pancreasinfiltrating neutrophils also extrudes neutrophil extracellular traps (NETs), suggesting a tissue-specific pathogenic role. Whole-transcriptome analysis of purified blood neutrophils revealed a unique molecular signature that is distinguished by an overabundance of IFN-associated genes; despite being healthy, said signature is already present in T1D-autoantibody-negative at-risk subjects. CONCLUSIONS. These results reveal an unexpected abnormality in neutrophil disposition both in the circulation and in the pancreas of presymptomatic and symptomatic T1D subjects, implying that targeting neutrophils might represent a previously unrecognized therapeutic modality

    A Swedish approach to the prevention of type 1 diabetes

    No full text
    Background: The autoimmune destruction of beta cells, resulting in clinical type 1 diabetes, may start early in life and last for several months or years. During this period of time, we have an opportunity to try to prevent or delay further beta-cell destruction and clinical onset of type 1 diabetes. Objectives: Ongoing prediction and prevention studies in Skåne, Sweden are described. Methods: During September 2000 to August 2004, 35 000 children were screened at birth for genetic type 1 diabetes risk in the Diabetes Prediction in Skåne Study (DiPiS). In August 2004, the screening continued within the Enviromnental Determinants of Diabetes in the Young study (TEDDY). In the clinical trial Diabetes Prevention – Immune Tolerance (DiAPREV-IT), children with multiple islet autoimmunity have been included to investigate if immune tolerance with Alum-formulated GAD65 may prevent further beta-cell loss. Results: In DiPiS and TEDDY, a large number of children are followed in order to find the factors that trigger the autoimmune process leading to type 1 diabetes. Children followed in the studies develop diabetes at an early stage of disease, with few symptoms and a low frequency of diabetes ketoacidosis. DiAPREV-IT is still blinded and results will be available in December 2016. Conclusion: Large prospective studies will be needed to understand the complex process leading to type 1 diabetes. Secondary prevention may be possible in children with islet autoimmunity, but the studies are complicated by the variability of glucose metabolism and beta-cell loss

    Vaccination against type 1 diabetes.

    No full text
    The clinical onset of type 1 diabetes or autoimmune diabetes occurs after a prodrome of islet autoimmunity. The warning signals for the ensuing loss of pancreatic islet beta cells are autoantibodies against insulin, GAD65, IA-2, and ZnT8, alone or in combinations. Autoantibodies against e.g. insulin alone have only a minor risk for type 1 diabetes. However, progression to clinical onset is increased by the induction of multiple islet autoantibodies. At the time of clinical onset, insulitis may be manifest, which seem to reduce the efficacy of immunosuppression. Autoantigen-specific immunotherapy with alum-formulated GAD65 (Diamyd(®) ) show promise to reduce the loss of beta-cell function after the clinical onset of type 1 diabetes. The mechanisms are unclear but may involve the induction of T regulatory cells, which may suppress islet autoantigen reactivity. Past and on-going clinical trials have been safe. Future clinical trials, perhaps as combination autoantigen-specific immunotherapy may increase the efficacy to prevent the clinical onset in subjects with islet autoantibodies or preserve residual beta-cell function in newly diagnosed type 1 diabetes patients
    corecore