6,121 research outputs found

    Morphological instability, evolution, and scaling in strained epitaxial films: An amplitude equation analysis of the phase field crystal model

    Full text link
    Morphological properties of strained epitaxial films are examined through a mesoscopic approach developed to incorporate both the film crystalline structure and standard continuum theory. Film surface profiles and properties, such as surface energy, liquid-solid miscibility gap and interface thickness, are determined as a function of misfit strains and film elastic modulus. We analyze the stress-driven instability of film surface morphology that leads to the formation of strained islands. We find a universal scaling relationship between the island size and misfit strain which shows a crossover from the well-known continuum elasticity result at the weak strain to a behavior governed by a "perfect" lattice relaxation condition. The strain at which the crossover occurs is shown to be a function of liquid-solid interfacial thickness, and an asymmetry between tensile and compressive strains is observed. The film instability is found to be accompanied by mode coupling of the complex amplitudes of the surface morphological profile, a factor associated with the crystalline nature of the strained film but absent in conventional continuum theory.Comment: 16 pages, 10 figures; to be published in Phys. Rev.

    Phase field crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures

    Full text link
    The dynamics of phase field crystal (PFC) modeling is derived from dynamical density functional theory (DDFT), for both single-component and binary systems. The derivation is based on a truncation up to the three-point direct correlation functions in DDFT, and the lowest order approximation using scale analysis. The complete amplitude equation formalism for binary PFC is developed to describe the coupled dynamics of slowly varying complex amplitudes of structural profile, zeroth-mode average atomic density, and system concentration field. Effects of noise (corresponding to stochastic amplitude equations) and species-dependent atomic mobilities are also incorporated in this formalism. Results of a sample application to the study of surface segregation and interface intermixing in alloy heterostructures and strained layer growth are presented, showing the effects of different atomic sizes and mobilities of alloy components. A phenomenon of composition overshooting at the interface is found, which can be connected to the surface segregation and enrichment of one of the atomic components observed in recent experiments of alloying heterostructures.Comment: 26 pages, 5 figures; submitted to Phys. Rev.

    Diffusive Atomistic Dynamics of Edge Dislocations in Two Dimensions

    Full text link
    The fundamental dislocation processes of glide, climb, and annihilation are studied on diffusive time scales within the framework of a continuum field theory, the Phase Field Crystals (PFC) model. Glide and climb are examined for single edge dislocations subjected to shear and compressive strain, respectively, in a two dimensional hexagonal lattice. It is shown that the natural features of these processes are reproduced without any explicit consideration of elasticity theory or ad hoc construction of microscopic Peierls potentials. Particular attention is paid to the Peierls barrier for dislocation glide/climb and the ensuing dynamic behavior as functions of strain rate, temperature, and dislocation density. It is shown that the dynamics are accurately described by simple viscous motion equations for an overdamped point mass, where the dislocation mobility is the only adjustable parameter. The critical distance for the annihilation of two edge dislocations as a function of separation angle is also presented.Comment: 13 pages with 17 figures, submitted to Physical Review

    Dynamic scaling and quasi-ordered states in the two dimensional Swift-Hohenberg equation

    Full text link
    The process of pattern formation in the two dimensional Swift-Hohenberg equation is examined through numerical and analytic methods. Dynamic scaling relationships are developed for the collective ordering of convective rolls in the limit of infinite aspect ratio. The stationary solutions are shown to be strongly influenced by the strength of noise. Stationary states for small and large noise strengths appear to be quasi-ordered and disordered respectively. The dynamics of ordering from an initially inhomogeneous state is very slow in the former case and fast in the latter. Both numerical and analytic calculations indicate that the slow dynamics can be characterized by a simple scaling relationship, with a characteristic dynamic exponent of 1/41/4 in the intermediate time regime

    Noise and dynamical pattern selection

    Full text link
    In pattern forming systems such as Rayleigh-Benard convection or directional solidification, a large number of linearly stable, patterned steady states exist when the basic, simple steady state is unstable. Which of these steady states will be realized in a given experiment appears to depend on unobservable details of the system's initial conditions. We show, however, that weak, Gaussian white noise drives such a system toward a preferred wave number which depends only on the system parameters and is independent of initial conditions. We give a prescription for calculating this wave number, analytically near the onset of instability and numerically otherwise.Comment: 12 pages, REVTEX, no figures. Submitted to Phys. Rev. Let

    Phase-field approach to heterogeneous nucleation

    Full text link
    We consider the problem of heterogeneous nucleation and growth. The system is described by a phase field model in which the temperature is included through thermal noise. We show that this phase field approach is suitable to describe homogeneous as well as heterogeneous nucleation starting from several general hypotheses. Thus we can investigate the influence of grain boundaries, localized impurities, or any general kind of imperfections in a systematic way. We also put forward the applicability of our model to study other physical situations such as island formation, amorphous crystallization, or recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical Review

    Dynamical transitions and sliding friction of the phase-field-crystal model with pinning

    Get PDF
    We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers.Comment: 7 pages, 8 figures, to appear in Physcial Review

    Glassy phases and driven response of the phase-field-crystal model with random pinning

    Get PDF
    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then finally a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes

    Properties of pattern formation and selection processes in nonequilibrium systems with external fluctuations

    Full text link
    We extend the phase field crystal method for nonequilibrium patterning to stochastic systems with external source where transient dynamics is essential. It was shown that at short time scales the system manifests pattern selection processes. These processes are studied by means of the structure function dynamics analysis. Nonequilibrium pattern-forming transitions are analyzed by means of numerical simulations.Comment: 15 poages, 8 figure
    corecore