1,172 research outputs found

    Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions

    Get PDF
    Biogenic aerosols play important roles in atmospheric chemistry physics, the biosphere, climate, and public health. Here, we show that fungi which actively discharge their spores with liquids into the air, in particular actively wet spore discharging Ascomycota (AAM) and actively wet spore discharging Basidiomycota (ABM), are a major source of primary biogenic aerosol particles and components. We present the first estimates for the global average emission rates of fungal spores. Measurement results and budget calculations based on investigations in Amazonia (Balbina, Brazil, July 2001) indicate that the spores of AAM and ABM may account for a large proportion of coarse particulate matter in tropical rainforest regions during the wet season (0.7–2.3 μg m^−3). For the particle diameter range of 1–10 μm, the estimated proportions are ~25% during day-time, ~45% at night, and ~35% on average. For the sugar alcohol mannitol, the budget calculations indicate that it is suitable for use as a molecular tracer for actively wet discharged basidiospores (ABS). ABM emissions seem to account for most of the atmospheric abundance of mannitol (10–68 ng m^−3), and can explain the observed diurnal cycle (higher abundance at night). ABM emissions of hexose carbohydrates might also account for a significant proportion of glucose and fructose in air particulate matter (7–49 ng m^−3), but the literature-derived ratios are not consistent with the observed diurnal cycle (lower abundance at night). AAM emissions appear to account for a large proportion of potassium in air particulate matter over tropical rainforest regions during the wet season (17–43 ng m^−3), and they can also explain the observed diurnal cycle (higher abundance at night). The results of our investigations and budget calculations for tropical rainforest aerosols are consistent with measurements performed at other locations. Based on the average abundance of mannitol reported for extratropical continental boundary layer air (~25 ng m^−3), we have also calculated a value of ~17 Tg yr^−1 as a first estimate for the global average emission rate of ABS over land surfaces, which is consistent with the typically observed concentrations of ABS (~10³–10^4 m^−3; ~0.1–1 μg m^−3). The global average atmospheric abundance and emission rate of total fungal spores, including wet and dry discharged species, are estimated to be higher by a factor of about three, i.e. 1 μg m^−3 and ~50 Tg yr^−1. Comparisons with estimated rates of emission and formation of other major types of organic aerosol (~47 Tg yr^−1 of anthropogenic primary organic aerosol; 12–70 Tg yr^−1 of secondary organic aerosol) indicate that emissions from fungi should be taken into account as a significant global source of organic aerosol. The effects of fungal spores and related chemical components might be particularly important in tropical regions, where both physicochemical processes in the atmosphere and biological activity at the Earth's surface are particularly intense, and where the abundance of fungal spores and related chemical compounds are typically higher than in extratropical regions

    Low-Energy Surface States in the Normal State of α\alpha-PdBi2 Superconductor

    Full text link
    Topological superconductors as characterized by Majorana surface states has been actively searched for their significance in fundamental science and technological implication. The large spin-orbit coupling in Bi-Pd binaries has stimulated extensive investigations on the topological surface states in these superconducting compounds. Here we report a study of normal-state electronic structure in a centrosymmetric α\alpha-PdBi2 within density functional theory calculations. By investigating the electronic structure from the bulk to slab geometries in this system, we predict for the first time that α\alpha-PdBi2 can host orbital-dependent and asymmetric Rashba surface states near the Fermi energy. This study suggests that α\alpha-PdBi2 will be a good candidate to explore the relationship between superconductivity and topology in condensed matter physics

    CONTROL METHODS FOR SNAKES

    Get PDF
    Of the various types of wildlife that home owners find undesirable, snakes are probably the leading offenders. Because of much false teaching, many persons have a great dread of even non-venomous snakes; hence control often is practiced when not needed. Nevertheless, very few people are willing to accept the presence of snakes in their gardens or their yards, especially if there is a concern for children playing in the area. For this reason snake control is often desirable about homes and suburban housing areas. Other situations where controls might be justified are recreation areas, farms, bird sanctuaries, duck nesting marshes, and fish hatcheries.The first step in control is to find out what kind of a snake is creating the trouble and to learn something of its habits. Secondly, it is important to estimate the cost of the method to be used and to decide whether or not the expense and effort are justified. There is no single method of eliminating snakes from a given area, and since each person\u27s predicament is different, it is practical to suggest here several ways of eliminating snakes. The following control methods are divided into seven categories. The first five groups are over-all general means of control, the sixth category is devoted to repellents, and the last group deals with miscellaneous methods, any one of which might apply to a particular set of circumstances

    Schaaleffecten en Onderwijskwaliteit

    Get PDF
    Statistische analyse van data voor het voortgezet onderwijs laat zien dat er geen eenduidig verband bestaat tussen schaalgrootte en kwaliteit. Actief overheidsbeleid gericht op schaalverandering kan volgens dit onderzoek niet gebaseerd worden op wetenschappelijk bewijs

    Theory of ultrafast quasiparticle dynamics in high-temperature superconductors: Pump fluence dependence

    Full text link
    We present a theory for the time-resolved optical spectroscopy of high-temperature superconductors at high excitation densities with strongly anisotropic electron-phonon coupling. A signature of the strong coupling between the out-of-plane, out-of-phase O buckling mode (B1gB_{1g}) and electronic states near the antinode is observed as a higher-energy peak in the time-resolved optical conductivity and Raman spectra, while no evidence of the strong coupling between the in-plane Cu-O breathing mode and nodal electronic states is observed. More interestingly, it is observed that under appropriate conditions of pump fluence, this signature exhibits a re-entrant behavior with time delay, following the fate of the superconducting condensate.Comment: 5 pages, 3 embedded eps figures, to appear in PR

    Optical Properties of Organometallic Perovskite: An ab initio Study using Relativistic GW Correction and Bethe-Salpeter Equation

    Full text link
    In the development of highly efficient photovoltaic cells, solid perovskite systems have demonstrated unprecedented promise, with the figure of merit exceeding nineteen percent of efficiency. In this paper, we investigate the optical and vibrational properties of organometallic cubic perovskite CH3NH3PbI3 using first-principles calculations. For accurate theoretical description, we go beyond conventional density functional theory (DFT), and calculated optical conductivity using relativist quasi-particle (GW) correction. Incorporating these many-body effects, we further solve Bethe-Salpeter equations (BSE) for excitons, and found enhanced optical conductivity near the gap edge. Due to the presence of organic methylammonium cations near the center of the perovskite cell, the system is sensitive to low energy vibrational modes. We estimate the phonon modes of CH3NH3PbI3 using small displacement approach, and further calculate the infrared absorption (IR) spectra. Qualitatively, our calculations of low-energy phonon frequencies are in good agreement with our terahertz measurements. Therefore, for both energy scales (around 2 eV and 0-20 meV), our calculations reveal the importance of many-body effects and their contributions to the desirable optical properties in the cubic organometallic perovskites system.Comment: 5 pages, 4 figure

    Induced Ferromagnetism at BiFeO3/YBa2Cu3O7 Interfaces

    Full text link
    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO3/YBa2Cu3O7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFeO3, we are able to show that a metallic ferromagnetism is induced near the interface. We further develop an interface exchange-coupling model and place the extracted exchange coupling interaction strengths, from the first-principles calculations, into a resultant generic phase diagram. Our conclusion of interfacial ferromagnetism is confirmed by the presence of a hysteresis loop in field-dependent magnetization data. The emergence of interfacial ferromagnetism should have implications to electronic and transport properties.Comment: 13 pages, 4 figure
    corecore