57 research outputs found

    Grand Challenges in global eye health: a global prioritisation process using Delphi method

    Get PDF
    Background We undertook a Grand Challenges in Global Eye Health prioritisation exercise to identify the key issues that must be addressed to improve eye health in the context of an ageing population, to eliminate persistent inequities in health-care access, and to mitigate widespread resource limitations. Methods Drawing on methods used in previous Grand Challenges studies, we used a multi-step recruitment strategy to assemble a diverse panel of individuals from a range of disciplines relevant to global eye health from all regions globally to participate in a three-round, online, Delphi-like, prioritisation process to nominate and rank challenges in global eye health. Through this process, we developed both global and regional priority lists. Findings Between Sept 1 and Dec 12, 2019, 470 individuals complete round 1 of the process, of whom 336 completed all three rounds (round 2 between Feb 26 and March 18, 2020, and round 3 between April 2 and April 25, 2020) 156 (46%) of 336 were women, 180 (54%) were men. The proportion of participants who worked in each region ranged from 104 (31%) in sub-Saharan Africa to 21 (6%) in central Europe, eastern Europe, and in central Asia. Of 85 unique challenges identified after round 1, 16 challenges were prioritised at the global level; six focused on detection and treatment of conditions (cataract, refractive error, glaucoma, diabetic retinopathy, services for children and screening for early detection), two focused on addressing shortages in human resource capacity, five on other health service and policy factors (including strengthening policies, integration, health information systems, and budget allocation), and three on improving access to care and promoting equity. Interpretation This list of Grand Challenges serves as a starting point for immediate action by funders to guide investment in research and innovation in eye health. It challenges researchers, clinicians, and policy makers to build collaborations to address specific challenge

    Effect of polar plasticizers on the characteristics of selected cyclic nitramines

    No full text
    Dioctyl sebacate (DOS) is a plasticizer used with oily material for the softening of polyisobutylene binder (PIB) to form a polymeric matrix. This matrix was used for the preparation of various plastic explosives. The following energetic cyclic nitramines were used as explosive fillers: BCHMX (cis-1,3,4,6- tetranitrooctahydroimidazo [4,5 d]imidazole), ε-HNIW (ε-2,4,6,8,10,12- hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), RDX (1,3,5-trinitro-1,3,5- triazacyclohexane), and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane). For comparison, Fluorel binder was used for the preparation of several plastic bonded explosives (PBXs) based on the same selected explosives. Impact and friction sensitivities of the prepared samples and the pure explosive fillers were measured. The thermal stability was studied using differential thermal analysis (DTA). High performance liquid chromatography (HPLC) was used to detect the presence of BCHMX dissolved in dioctyl sebacate (DOS). The heat of combustion of the prepared samples and of the pure explosive fillers was measured using a bomb calorimetry. The results show that PIB softened by plasticizer (DOS) has a greater positive effect on decreasing the impact sensitivity of the studied pure explosives than Fluorel binder. On the other hand, the plasticizer acts as a solvent for the energetic materials and decreases the decomposition temperature of these plastic explosives

    Path to ε-HNIW with Reduced Impact Sensitivity

    No full text
    New purification method was applied to obtain epsilon HNIW (ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, ε-HNIW) which has low impact sensitivity. The method is based on removing the impurities from a solution of alpha HNIW (ε-HNIW) by a chemical reaction to obtain pure epsilon form. For comparison, selected different published methods for recrystallization of HNIW to obtain the epsilon form were studied. All the selected methods are based on solvent-antisolvent technique. The optimum parameters, such as type of solvent and anti-solvent, volume ratio of solvent to anti-solvent, rate of addition, speed of stirring, etc., were applied to enhance the crystal size and shape of ε-HNIW. Checking the polymorphs of the obtained HNIW was done by Fourier transform infrared spectroscopy (FTIR). The thermal stability of the prepared samples was studied by using differential thermal analysis technique (DTA). Qualitative analysis of the crystal size and shape was done using scanning electron microscope (SEM) devise. Quantitative measurement of the crystals sizes for the studied samples was determined by Laser scattering particle size distribution analyzer. Impact sensitivity was measured by falling hammer test. The results indicate that all the applied methods of recrystallization give ε-HNIW. The impact sensitivity of HNIW decreases by obtaining small particles with regular shape. All the used published methods produce ε-HNIW with higher impact sensitivity than other nitramines. While the obtained crystals from the new method has regular smooth surface, with small particle size and its impact sensitivity is lower than RDX and HMX

    Recent Advances in the Study of the Initiation of Energetic Materials Using the Characteristics of Their Thermal Decomposition Part II. Using Simple Differential Thermal Analysis

    No full text
    Simple Differential Thermal Analysis (DTA), with evaluation of its output by the Kissinger method, was used in the case of emulsion explosives and, as an advanced application, for several plastic bonded explosives (PBXs). In both of these kinds of explosive the square of their detonation velocities, D2, is used as their performance characteristic. A relationship between the slope of the Kissinger equation, EaT-1, and the D2 values makes it possible to formulate a possible mechanism for the initiation of emulsion explosives. Regarding PBXs, it would seem possible to postulate a change in the detonation chemistry of plastic bonded nitramines, depending on the pressure and temperature in the zone of the detonation wave, particularly in the case of CL-20 fillers. Binders with aromatic building units in their macromolecular structure seem to be less-favoured in terms of their thermal reactivity and performance than the final PBXs. These findings document the advantages of the above-mentioned application of simple DTA

    Thermal Behavior and Decomposition Kinetics of RDX and RDX/HTPB Composition Using Various Techniques and Methods

    No full text
    In this paper, the thermal behavior and decomposition kinetics of trinitrohexahydrotriazine (RDX) and its polymer bonded explosive (PBX) containing a hydroxyl-terminated polybutadiene (HTPB) based polyurethane binder in the ratio 80% RDX/ 20% HTPB were investigated using various experimental techniques and analytical methods. The HTPB polyurethane matrix contains other additives and was cured using hexamethylene diisocyanate (HMDI). Thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Vacuum Stability Test (VST) and Ignition Delay Techniques were applied both isothermally and non-isothermally. The kinetic parameters were determined using both the isoconversional (model free) and the model-fitting methods. For comparison, Advanced Kinetics and Technology Solution (AKTS) software was also used. It was found that the addition of an HTPB-based polyurethane matrix to pure RDX decreased its decomposition temperature. It was also found that RDX/HTPB has a lower activation energy than pure RDX. The polyurethane matrix had a significant effect on the decomposition mechanism of RDX resulting in different reaction models. It was concluded that the activation energies obtained using the Ozawa, Flynn, and Wall (OFW) and Kissinger-Akahira-Sunose (KAS) methods were very close to the results obtained via the AKTS software lying in the range 218.3-220.2 kJ•mol−1. The VST technique yielded kinetic parameters close to those obtained using TG/DTG. On the other hand, the Ignition Delay Technique yielded different and inconsistent kinetic parameters

    Some Relationships Among Thermal Properties, Detonation Parameters and Sensitivity of Nitramine Fillers in Formex Based PBXs

    No full text
    Thermal behavior and decomposition kinetics of formex-bonded on some attractive cyclic nitramines (BCHMX, HMX, RDX and CL-20) were investigated by means of nonisothermal Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC). Besides, their detonation parameters have been calculated by EXPLO 5 code. It was found that the effect of formex polymer base on thermal decomposition of HMX is different from other cyclic nitramines, namely, the formex base could increase the activation energy of HMX while decrease that of others. Besides, the logarithm of volume heat of detonation for formex based explosives is linearly dependent on their time constant of initiation. Furthermore, on one hand, except for RDX, the heat of detonation decreases with the increase of activation energy, and the spark energy and impact energy of cyclic nitramine fillers decreases with the increase of the critical temperature of their PBXs. On the other hand, except for HMX, the rate constant of PBXs is linearly dependent on the impact sensitivity of their pure nitramine fillers

    Replacement of PETN by Bicyclo-HMX in Semtex 10

    No full text
    Bicyclo-HMX (BCHMX) was studied in the form of a plastic explosive bonded by the plastic matrix of the explosive Semtex 10 and the results were compared with the original Semtex 10 which contains PETN as an explosive filler. The tests included measurements in the sensitivity to impact and friction. The thermal stability was studied using differential thermal analysis (DTA) with the evaluation of the outputs using the Kissinger method. The detonation velocity was measured experimentally and the detonation characteristics were calculated by means of EXPLO 5 code and the Kamlet & Jacobs method. On the basis of mutual comparison of all the obtained results, it was concluded that replacement of PETN by Bicyclo-HMX enhances the friction sensitivity, thermal stability and the detonation parameters of the explosive Semtex 10, while the impact sensitivity is approximately the same. Calculated results of EXPLO 5 code showed good agreement with the experimental detonation velocities

    The Influence of the Semtex Matrix on the Thermal Behavior and Decomposition Kinetics of Cyclic Nitramines

    No full text
    The thermal behavior and decomposition kinetics of Semtex 10 polymeric matrix (Semtex) bonded PBXs containing RDX (1,3,5-trinitro 1,3,5-triazinane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), BCHMX (cis-1,3,4,6tetranitrooctahydroimidazo [4,5-d] imidazole), HNIW (2,4,6,8,10,12-hexanitro2,4,6,8,10,12-hexaazaisowurtzitane) have been investigated by means of nonisothermal TG and DSC techniques. It is shown that only a single decomposition process occurs for RDX-SE and HMX-SE whilst an obvious two-step process occurs for CL-20-SE and BCHMX-SE. The onset of the exotherms were observed at 210.6, 239.7, 279.2 and 229.4 °C with the peak maxima at 232.2, 249.4, 280.4 and 240.2 °C, and energy changes of 1808, 2140, 612 and 1757 J·g-1 for RDX-SE, BCHMX-SE, HMX-SE and CL-20-SE, respectively. It has been found that the Semtex matrix has little influence on the activation energy distribution for RDX, BCHMX and ε-CL-20. The activation energies for BCHMX-SE and CL-20-SE decomposition are almost independent of the degree of conversion, with mean values of 159.6 ±1.9 and 187.3 ±1.8 kJ·mol-1. It has been proved that Semtex and Viton A are better binders than C4 and Formex for ε-CL-20 and RDX based PBXs in terms of their greater thermal stability, and Formex is a poor binder for BCHMX

    Effect of Different Polymeric Matrices on the Sensitivity and Performance of Interesting Cyclic Nitramines

    No full text
    Different polymeric matrices, based on butadiene-styrene rubber, polymethyl-methacrylate and silicone binders, were investigated for their ability to decrease the sensitivity of explosives to different mechanical stimuli. A series of plastic explosives based on four different nitramines, namely RDX (1,3,5-trinitro- 1,3,5-triazacyclohexane), β-HMX (β-1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane), BCHMX (bicycloHMX, cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5- d ]imidazole) and ε -HNIW (ε -2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, ε-CL-20), bonded by the selected polymeric matrices were prepared. Sensitivity to impact of all of the plastic explosives prepared as well as of the pure explosives, was measured using the fall hammer test. Sensitivity to friction was determined using the BAM friction test. The performance was studied using the ballistic mortar test and the results were recorded relative to TNT (trinitrotoluene) as reference. By comparing the results of impact and friction sensitivities, it is obvious that the mechanism of transfer of the friction force to the reaction center of the nitramine molecule should be different from that of impact energy transfer. The silicone binder appeared to be the best polymer for decreasing the sensitivity of explosives. The results of the ballistic mortar proved that the performance of the plastic explosives prepared is affected by the type and weight percentage of the binder in each sample
    corecore